FastCube 2.0
Programmer
Manual

I FastCube 2.0 Programmer Manual

Table of contents

|
Chapter | FastCube 2 Architecture 2
Chapter Il Working with FastCube

components S
1 Saving and Loading of Cube and SHCeooiiiiiiii i 5

(O oY - - R PP TPPUP PRSI

Slice settings

(O 8 A=Y =T 41 o F P USRS UP PRSI 7
22 - = N e - Yo [o Yo 8
Loading cube from asingle database table ... 8
Setting up fields Of TFCXDALASOUICEcoiuiiiiiieiiie ettt e e b e e sbe e e beeeanbeeesbeeasneeeanes 10
Creating and adjusting attributes of TfCXDAtaSOUICEcocuiiiiiiiiiie e 11
3 S BIIING UP ST 1ottt et e 12
Creating SlICE STIUCTUIE ettt b ettt e et e e be e e be e e eabe e e be e e beeeanbeeebeeenbneeanne 13
MEASUIE MANAGEIM BN o.eeiiiiiiiiiii ettt et e e et e e e s et e s e be e e e e e kb e e e e e asnee e e e e anss e e e e annbeeeesanneeeeeennneeeaannnes 14
O N =T ¢ 1= Y =Y =] 0 1= 0 16
S o T0T oI o ¢ = UaT= Vo [=T 1= o | A 16

© 2014 Fast Reports Inc.

© 2014 Fast Reports Inc.

Chapter

FastCube 2
Architecture

FastCube 2 Architecture 2

The FastCube 2 component library is a set of non-visual and visual components
which store, handle and visualize multi-dimensional data. The FastCube 2 architecture is
represented in the following diagram:

TDataSet || any files. H
code. .
TfexDBDataSet TfexUserDataSet w
TfcxDataSource .mdc file
TfcxCube
TfexFilterManager
TfcxSlice TfcxSlice

TfexSliceGrid TfexChart TfcxSliceGrid TfexChart

FastCube 2 consists of the following components:
Non visual components

e TfcxDBDataSet - component for connecting to a database source

e TfcxUserDataSet - component for connecting to a user source (based on
event handlers)

e TfcxDataSource - component which links all the cube data sources and
describes the fields and attributes

e TfcxCube - (a cube) the main data storage

e TfcxSlice - (a slice) structure responsible for data presentation
and accordingly preparation of cube data

e TfcxFilterManager - manages filtering of the cube data for the slice

Main visual components:

e TfcxCubeGrid - (data table) visualizes source data from the cube

e TfcxSliceGrid - (cross table) visualizes data based on slice structure
and allows users to manipulate the data and structure

© 2014 Fast Reports Inc.

FastCube 2.0 Programmer Manual

e TfcxCubeGridToolbar - (data table toolbar) contains a set of buttons allowing
actions on the data table
e TfcxSliceGridToolbar - (cross table toolbar) contains a set of buttons

allowing actions on the cross table, slice and cube

Charting components:

e TfcxChart - visualizes source data from the cube as a chart/
diagram
e TfcxChartToolbar - (chart toolbar) contains a set of buttons allowing

actions on the chart

© 2014 Fast Reports Inc.

Chapter

Working with
FastCube
components

FastCube 2.0 Programmer Manual

2.1

2.11

Saving and Loading of Cube and Slice

Data loaded into the cube can be saved for the future use. Saved data can then be
loaded into the cube without needing to access the source database. As well as the data,
the settings for the slice, groups, filters and charts can also be saved. The cube data and/
or settings can be saved in a file, a stream or in a BLOB-field in a database, using
methods of the TfcxCube, TfcxSlice, TfexFilterManager and TfcxChart components.

Cube data
Cube data (TfcxCube):

function LoadFromFile(ACubeFileName: String): Boolean;
Loads cube data from a file. Returns True if the file has been successfully loaded.
The cube is cleared before the data is loaded.

function LoadFromStream(ACubeStream: TStream): Boolean;
Loads cube data from a stream. Returns True if the stream has been successfully
loaded.
The cube is cleared before the data is loaded.

function AppendFromFile(ACubeFileName: String): Boolean;
Appends cube data from a file. Returns True if the file has been successfully loaded.
The cube merges the data it already contains with the loaded data.

function AppendFromStream(ACubeStream: TStream): Boolean;
Appends cube data from a stream. Returns True if the stream has been
successfully loaded.
The cube merges the data it already contains with the loaded data.

procedure SaveToFile(ACubeFileName: String; AFilter: TObject = nil);
Saves cube data to a file. If the AFilter argument points to a TfcxFilterManager object
the cube saves only that data which passes the filter.

procedure SaveToStream(ACubeStream: TStream; ACompressionLevel:
TCompressionLevel = clMax; AFilter: TObject = nil);
Saves cube data to a stream. If the AFilter argument points to a TfcxFilterManager
object the cube saves only that data which passes the filter. The
ACompressionLevel argument sets the compression level.

The cube saves group and slice settings together with the data. The cube does not save
the state of filters and any linked chart settings.
The cube file has an mdc extension by default.

© 2014 Fast Reports Inc.

Working with FastCube components 6

212

Code examples:

fcxCubel. LoadFronFil e(' c:\cubel. ndc');

f cxCubel. AppendFrontFil e(' c:\cubel. ndc');

f cxCubel. SaveToFil e(' c:\cube2. ndc');

fcxCubel. SaveToFil e(' c:\cube2Filter.nmdc', fcxFilterManager1l);

Slice settings

Slice settings (TfcxSlice):

function LoadFromFile(AFileName: String): Boolean;

Loads slice settings from a file. Returns True if the file has been successfully loaded.
The slice is reset before the load. If the loaded settings contain information about
groups then the cube group settings are cleared before the load. If the loaded
settings contain information about filters then the filter manager settings are cleared
before the load. If the loaded settings contain information about charts then the chart
settings are cleared before the load.

function LoadFromStream(ASliceStream: TStream): Boolean;

Loads slice settings from a stream. Returns True if the stream has been
successfully loaded.

The slice is reset before the load. If the loaded settings contain information about
groups then the cube group settings are cleared before the load. If the loaded
settings contain information about filters then the filter manager settings are cleared
before the load. If the loaded settings contain information about charts then the chart
settings are cleared before the load.

procedure SaveToFile(AFileName: String; AStoreltems: TfcxltemsForStoreWithSlice =

0);

Saves slice settings to a file. The AStoreltems argument sets which additional
information is also to be saved (filters, groups, charts).

procedure SaveToStream(ASliceStream: TStream; AStoreltems:
TfexItemsForStoreWithSlice = []);

Saves slice settings to a stream. The AStoreltems arguments sets which additional
information is also to be saved (filters, groups, charts).

Slice files can also contain group settings, filter settings and chart settings. Slice files
are xml files with an mds extension by default.

Code examples:

fcxSlicel. LoadFronFil e(' c:\schemal. nds');

fcxSlicel. SaveToFil e(' c:\schema2. nds');

fcxSlicel. SaveToFil e(' c:\schema3.nds', [fcxiss_Filters, fcxiss_Goups,
fcxiss_Charts]);

© 2014 Fast Reports Inc.

7

FastCube 2.0 Programmer Manual

2.13

Other settings
Filter settings (TfcxFilterManager):

function LoadFromFile(AFileName: String): Boolean;
Loads filter settings from a file. Returns True if the file has been successfully loaded.
The filter settings are cleared before the load.

function LoadFromStream(AStream: TStream): Boolean;
Loads filter settings from a stream. Returns True if the stream has been
successfully loaded.
The filter settings are cleared before the load.

procedure SaveToFile(AFileName: String);
Saves filter settings to a file.

procedure SaveToStream(AStream: TStream);
Saves filter settings to a stream.

The filter settings file has an fcf extension by default.
Group settings (TfcxCube):

function LoadGroupsFromFile(AGroupsFileName: String): Boolean;
Loads group settings from a file. Returns True if the file has been successfully
loaded.
The group settings are cleared before the load.

function LoadGroupsFromStream(AStream: TStream): Boolean;
Loads group settings from a stream. Returns True if the stream has been
successfully loaded.
The group settings are cleared before the load.

procedure SaveGroupsToFile(AGroupsFileName: String);
Saves group settings to a file.

procedure SaveGroupsToStream(AStream: TStream);
Saves group settings to a stream.

The group settings file has an fcg extension by default.

Chart settings (TfcxChart):

function LoadFromFile(AFileName: String): Boolean;
Loads chart settings from a file. Returns True if the file has been successfully
loaded.
The chart settings are cleared before the load.

© 2014 Fast Reports Inc.

Working with FastCube components 8

2.2

221

function LoadFromStream(AStream: TStream): Boolean;
Loads chart settings from a stream. Returns True if the stream has been
successfully loaded.
The chart settings are cleared before the load.

procedure SaveToFile(AFileName: String);
Saves chart settings to a file.

procedure SaveToStream(AStream: TStream);
Saves chart settings to a stream.

The chart settings file has an mdt extension by default.
Code examples:

fcxFilter Manager 1. LoadFronFile('c:\Filterl.fcf");
fcxFil ter Manager 1. SaveToFile('c:\Filter2.fcf');

f cxCubel. LoadGr oupsFronFil e(' c:\Groupl.fcg');
f cxCubel. SaveG oupsToFil e(' ¢c:\ G oup2.fcg');

fcxChartl. LoadFronFile(' c:\Chartl. ndt');
fcxChart 1. SaveToFile('c:\Chart2. ndt"');

Data loading

Data loading from database and user sources.

Loading cube from a single database table

The main goal of the FastCube component library is to create a cross summary
table from "flat" data.

The simplest cube data source is a database table.

To load data into the cube a connection to the database has to be created through a
descendant of the TDataSet component. The exact choice of component depends on the
database component used in the application.

A TfcxDBDataSet component is needed to link the TDataSet descendant with a
TfcxDataSource component.

The TfcxDataSource component contains the full description of the data structure for
the cube. It describes all the data sources, files for those sources, relations between
sources, rules for data conversion, etc. One of the sources must be the main source,
which is assigned to the TfcxDataSource.DataSet property. When all the data to be
loaded is contained in a single database table then only the main source needs to be
assigned.

© 2014 Fast Reports Inc.

FastCube 2.0 Programmer Manual

Next the TfcxDataSource, TfcxCube, TfexSlice and TfexSliceGrid components must
be linked together. TfcxCube and TfcxSlice can be linked through the filter manager,
TfcxFilterManager. If a TfcxFilterManager component is not explicity added to the
application then the TfcxSlice will automatically create an internal TfcxFilterManager. An
explicit filter manager component is only needed when one filter manager will be used by
more than one slice.

TfcxDataSource can contain a list of the source fields. If the field list is not present
then all the source fields will be automatically loaded.

TfcxDataSource.Fields contains the list of main source fields. The field list can be
deleted by calling TfcxDataSource.DeleteFields. A field list can be loaded from the source
by calling TfcxDataSource.AddFields. The field list is loaded only when the source
contains field objects (which were defined in the form designer or created automatically
when the DataSet was opened). If the field list is not going to be changed then it is not
necessary to call AddFields, since it is called automatically when the source is opened.

The cube source can be a TfcxDataSource component, a cube file or a cube
stream. The type of source to be used is specified in the TfcxCube.CubeSource :
TfcxCubeSource property. The TfcxCubeSource enumeration is:

Tf cxCubeSource = (

fccs_None, /1 None

f ccs_Dat aSour ce, /1 load from fcxDat aSource
fccs_CubeFil e, /'l load fromfile
fccs_CubeStream // load from Stream

);
In our case we need to use the value fccs_DataSource.

The cube loads its data when the TfcxCube.Open method is called. The cube
automatically opens the specified source and loads the data from the required fields.

The cross-table is ready for use after the data has been loaded.

Code examples:

/1l Create required conponents at run tine
fcxDBDat aSet 1 : = Tf cxDBDat aSet. Create(Sel f);
fcxDat aSourcel : = TfcxDat aSource. Create(Sel f);
fcxCubel : = TfcxCube. Create(Sel f);

fcxSlicel := TfcxSlice. Create(Sel f);
fcxSliceGidl := TfexSliceGrid. Create(Sel f);
fcxSliceGidl. Parent := Self;
fcxSliceGidl.Align := alCient;

/1l Setup links between them

f cxDBDat aSet 1. Dat aSet : = Dat aSet 1;

f cxDat aSour cel. Dat aSet : = fcxDBDat aSet 1;
fcxCubel. Dat aSource : = fcxDat aSourcel;
fcxSlicel. Cube : = fcxCubel;

© 2014 Fast Reports Inc.

Working with FastCube components 10

fcxSliceGidl.Slice := fcxSlicel

/! clear field |ist
f cxDat aSour cel. Del et eFi el ds;

/1l set cube source type
fcxCubel. CubeSource : = fccs_Dat aSource

// 1oad data
f cxCubel. Open;

2.2.2 Setting up fields of TfcxDataSource

The field list of TfcxDataSource only needs to be specified in the following cases:
¢ if only some of the datasource fields are needed

if data needs to be converted

if data-time fields need to be split into parts (e.g. day, month)

if several datasources need to be linked

The TfcxDataSource.Fields property contains the field list of the main source.

The attributes of the source field SourceFieldProperties depends on its type -
SourceFieldType : TfcxAttributeType. The TfcxAttributeType enumeration is:

TfcxAttri buteType = (

fcxsft _Reference, // a field from source

fcxsft_Custom /'l a user field

fcxsft_Date, // a date field (able to be split into parts)
fexsft _Time // atime field (able to be split into parts)

)

The DataField property describes a source data type, with attributes :
e name and caption of the field in the source

e requirement to convert the data, together with the target data type

e name and caption of the field in the cube.

The DataField property attributes depend on the SourceFieldType.

Code examples:

/!l Load field Ilist
f cxDat aSour cel. AddFi el ds;

/1 change display |abel for the field indexed 2
f cxDat aSour cel. Fi el ds[2] . Dat aFi el d. CubeFi el dDi spl ayLabel : =
" Custoner';

/] set a rule to convert 'Population' field to a string
Tf cxRef er enceDat aFi el d(f cxDat aSour cel. Fi el ds. Fi el dByNane
[' Popul ation']. Dat aFi el d). Convert := True;

© 2014 Fast Reports Inc.

11

FastCube 2.0 Programmer Manual

2.2.3

Tf cxRef er enceDat aFi el d(f cxDat aSour cel. Fi el ds. Fi el dByNane
[' Popul ation']. Dat aFi el d). CubeFi el dType : = fcdt_String;

Creating and adjusting attributes of TfcxDataSource

SplitProperty: TfcxSplitProperty describes how to split a field on its "attributes".
Attributes can be parts of date and time fields (year, day, hour etc) or the fields from a
data source that is linked to the main data source of the cube. An attribute can have it own
sub-attributes. The nesting level of attributes is not limited.

A field can have an attribute CaptionSourceAttribute (to replace value captions from
possible values of that attribute) and an attribute OrderSourceAttribute (to order values
according to the attribute value order). If those attributes are not set then the field will use
its own values as captions and for ordering.

Attributes and the main field are of type TfcxSourceField. TfexSplitProperty.Attributes
contains the list of attributes.

DateSplitPaths and TimeSplitPaths specify which date and time parts are needed for
the the field (when the field is either a date or time).

Code examples:

var
ARef Fi el d: TfcxReferenceAttri but eSFProperti es;
AAttri bute: TfcxSourceField;

begin
/'l load field I|ist
f cxDat aSour cel. AddFi el ds;

/1l specify that Day, Month and Year attributes are required for the
'Datel' field

f cxDat aSour cel. Fi el ds. Fi el dByNane
['Datel'].SplitProperty. DateSplitPaths := [odt_Day, odt_Month,
odt _Year];

/1l create an attribute for the '"IdClient' field caption...

/1 create a new attribute for the 'IdClient' field
AAttribute : = TfcxSourceFi el d(fcxDat aSourcel. Fi el ds. Fi el dByNane
['1dClient"].SplitProperty. Attributes. Add);
/1l set correct attribute type
AAttri bute. SourceFi el dType : = fcxsft_Reference;
ARef Field : = TfcxReferenceAttri but eSFProperties
(AAttribute. SourceFi el dProperties);
/1 set the attribute source as the sane as the main field source
ARef Fi el d. Dat aSet : = TfcxRef erenceSour ceFi el dProperties
(f cxDat aSour cel. Fi el ds. Fi el dByNane
['1dCient']. SourceFieldProperties). DataSet;
/1 set the field nane of the attribute in the source as 'Full Nange'

© 2014 Fast Reports Inc.

Working with FastCube components 12

ARef Fi el d. Dat aFi el d. Dat aFi el dNane : = ' Ful | Nane';

/1 set the name of the created attribute as the source of captions
for the field

f cxDat aSour cel. Fi el ds. Fi el dByNane
['1dCient']. SourceFieldProperties. Capti onSourceAttribute :=
" Ful | Nane' ;

// the sanme task but with the client nane taken from anot her
source. ..

/1l create a new attribute for the "IdClient' field

AAttribute : = TfcxSourceFi el d(fcxDat aSourcel. Fi el ds. Fi el dByNane
['1dClient"].SplitProperty. Attributes. Add);

/1 set correct attribute type

AAttri bute. SourceFi el dType : = fcxsft_Reference;

ARef Field : = TfcxReferenceAttri but eSFProperties
(AAttribute. SourceFi el dProperties);

/1l set the attribute source as fcxDataSet2 - which is a reference
tabl e containing a key '1d" and a name ' Ful | Nane'

ARef Fi el d. Dat aSet : = fcxDat aSet 2;

/1 key field in the attribute source is "Id'

ARef Fi el d. | dFi el d. Dat aFi el dNane := 'I1d";

/1 name field in the attribute source is 'Full Nane'
ARef Fi el d. Dat aFi el d. Dat aFi el dNane : = ' Ful | Nane' ;

/1 set the name of the created attribute as the source of captions
for the field
f cxDat aSour cel. Fi el ds. Fi el dByNane
['1dCient']. SourceFieldProperties. Capti onSourceAttribute :=
" Ful | Nane' ;
end;

2.3 Setting up Slice

The TfcxSlice component is used to configure a slice.
Slice fields (TfcxSliceField) are automatically built based on the cube fields.

The slice has containers which may contain region fields
(TfexCommonFieldOfRegion):

e XAxisContainer - X-axis, contains fields of TfcxAxisField type
e YAxisContainer - Y-axis, contains fields of TfcxAxisField type
e PageContainer - filter region, contains fields of TfcxAxisField type

e MeasuresContainer - measures, contains fields of TfcxMeasureField type

TfcxAxisField fields are created based on the slice fields.

Measures TfcxMeasureField can be created either based on the slice fields, or
based on a FastScript script.

Any slice field can be placed in any container. A measure based on slice fields does
not prevent this field being placed in another container at the same time.

© 2014 Fast Reports Inc.

13 FastCube 2.0 Programmer Manual

2.3.1 Creating Slice structure

To add a dimension (field) to an axis region or to the filter region use the
following container methods:

function AddDimension(ASliceField: TfcxSliceField; AName: TfcxString = *; ACaption:
TfcxString =): integer;
Adds a dimension based on ASliceField field to the end of the field list of the specified
region. Returns the field position in the region's field list.
If the region field based on ASliceField already exists then it will be moved to the
specified position in the specified region, otherwise a new region field is created.

procedure InsertDimension(ASliceField: TfcxSliceField; Alndex: integer; AName:
TfcxString = *; ACaption: TfcxString = ");
Inserts a dimension based on ASliceField field to the specified position in the
specified region.
If the region field based on ASliceField already exists then it will be moved to the
specified position in the specified region, otherwise a new region field is created.

procedure DeleteDimension(Alndex: integer);
Deletes a dimension specified by the index. The region field is destroyed.

To edit the Measures field use the following container methods:

function AddMeasuresField: integer;
Moves the "Measures" field to the end of the specified region. Returns position of the
"Measures" field.

function InsertMeasuresField(Alndex: TfcxSmallCount): integer;
Moves the "Measures" field to the specified position of the specified region. Returns
position of the "Measures" field.

procedure DeleteMeasuresField;
Deletes the "Measures" field from the specified region. The "Measures" field is
automatically moved to the first position of the filters region.

IMPORTANT!

The "Measures" field is a virtual field which is always created but never present in the
list of fields of the corresponding container.

To access its properties use the MeasuresContainer property of the Slice object.

The position of the "Measures" field in the region is defined by the
MeasuresContainer.Position property. All the region fields with index equal to or greater
than MeasuresContainer.Position are shown after the "Measures™" field.

The MeasuresContainer.Container property defines a container which
corresponds to the "Measures" field.

© 2014 Fast Reports Inc.

Working with FastCube components 14

All operations changing the slice structure are best placed between BeginUpdate
and EndUpdate calls. This prevents unnecessary recalculations and rebuilds after each
change.

Code example:

/1 begin structure change - suspend recal cul ati ons on slice
fcxSlicel. Begi nUpdat e;

/! add slice field indexed O to the Y-axis

fcxSlicel. YAxi sCont ai ner. AddDi mensi on(fcxSlicel. SliceField[0]);

/1 add slice field indexed 1 to position O of the Y axis
fcxSlicel. YAXi sCont ai ner. I nsertDi nension(fcxSlicel.SliceField[1], 0);
/1 add a slice field having 'Full Name' name to the X-axis
fcxSlicel. XAxi sCont ai ner . AddDi menssi on(fcxSlicel. SliceFi el dByNane
['" Ful | Nane']);

/1 add ' Measures' field to the X-axis

fcxSlicel. XAxi sCont ai ner. AddMeasur esFi el d;

/1 finish structure change, start recal cul ations on slice
fcxSlicel. EndUpdat e;

2.3.2 Measure management

A measure can be created based on either a slice field or a FastScript script.

function AddMeasure(ASliceField: TfcxSliceField, AName, ACaption: TfcxString;
AAgrFunc: TfcxAgrFunc): Integer;
Adds a measure based on ASliceField with aggregate function AAgrFunc. Returns
the position of the measure in the container.

function AddCalcMeasure(AName, ACaption: TfcxString; AAgrFunc: TfcxAgrFunc;
AScriptFunctionName: String; AScriptFunctionCode: TfcxString): Integer;
Adds a calculated measure based on script function AScriptFunctionName with
aggregate function AAgrFunc. AScriptFunctionCode - the function's code. Returns
the position of the measure in the container.

function AddMeasure(AField: TfcxMeasureField): Integer;
Adds specified measure AField. Returns the position of the measure in the container.

procedure InsertMeasure(ASliceField: TfcxSliceField; AName, ACaption: TfcxString;
AAgrFunc: TfcxAgrFunc; Alndex: TfexSmallCount);
Inserts a measure based on ASliceField with aggregate function AAgrFunc in the
specified container position.

procedure InsertCalcMeasure(AName, ACaption: TfcxString; AAgrFunc: TfcxAgrFunc;
AScriptFunctionName: String; AScriptFunctionCode: TfcxString; Alndex:
TfcxSmallCount);
Inserts a calculated measure based on script function AScriptFunctionName with
aggregate function AAgrFunc in the specified container position.
AScriptFunctionCode - the function's code.

© 2014 Fast Reports Inc.

15 FastCube 2.0 Programmer Manual

procedure InsertMeasure(AField: TfcxMeasureField; Alndex: TfexSmallCount);
Inserts specified measure AField in the specified container position.

procedure DeleteMeasure(AMeasurelndex: TfcxSmallCount; ADoStopChange: Boolean
= False);
Deletes the measure with the specified index.

MeasuresContainer methods and properties allow access to and editing of
measures.
Measures can be hidden. Hidden measures are also calculated.

function MoveMeasure(AFromindex, ATolndex: TfcxSmallCount): boolean;
Moves measure within the container.

property Measures[Alndex: TfcxSmallCount]: TfcxMeasureField;
Measure access property.

TfcxMeasureField properties and methods allow editing of measure properties:

property Visible: Boolean;
Measure visibility.

property DisplayAs: TfcxDisplayAs;
Display style.

All operations changing the slice structure are best placed between BeginUpdate
and EndUpdate calls. This prevents unnecessary recalculations and rebuilds on each
change.

Code examples:

/! begin structure change - suspend recal cul ati ons on slice
fcxSlicel. Begi nUpdat e;

/1 add a measure based on slice field indexed 3 and aggregate function
af _Sum

fcxSlicel. Measur esCont ai ner. AddMeasure(fcxSlicel. SliceField[3]," Sunl',
"I ncone’', af_Sum;

/1 add a cal cul ated neasure, which calculates half of |ncone
fcxSlicel. MeasuresCont ai ner. AddCal cMeasure(' Calcl', 'Half of Incone',
af _Forrmula, 'CalcScriptl', 'Result := measures
['"Suml''].currentvalue / 2');

/1 nove the measure indexed 1 to position O

fcxSlicel. MeasuresCont ai ner. MoveMeasure(1, 0)

/1 hide the measure indexed 1

fcxSlicel. MeasuresCont ai ner. Measures[1] . Visible := Fal se;

/] finish structure change, start recal cul ati ons on slice

fcxSlicel. EndUpdat e;

© 2014 Fast Reports Inc.

Working with FastCube components 16

2.4 Filter management

Filters are needed to limit the quantity of calculated data, according to specified
criteria.

Filters can be edited using slice methods and properties.

Code examples:

/!l clear filter indexed 3 of the slice field indexed O
fcxSlicel.SliceField[0].UVFi|lterOf Val ue[3] := Fal se;

/1 begin changing the filter

fcxSlicel. SliceFiel dByNanme[' Fi rst Nane']. Begi nUpdat eFi el dFi | ter

/1 inactivate filter for all values of 'FirstNane' field

fcxSlicel. SliceFiel dByNanme[' Fi rstNane']. Set NoneFilter

/1 activate filter with value 'Sergey' for 'FirstNanme' field
fcxSlicel. SliceFieldByName[' FirstNane']. UVFilterOfVal ue[' Sergey'] : =

True;
// activate filter with value indexed 12 for 'FirstNanme' field
fcxSlicel. SliceFieldByName[' FirstNane'].UVFilterOF[12] := True;

/1 finish changing the filter (apply changes)
fcxSlicel. SliceFiel dByName[' Fi rst Nane']. EndUpdat eFi el dFi |l ter

/1 activate filter only for the value indexed 4 for the slice field
i ndexed O
fcxSlicel. SliceField[0].UVSi ngl el ndex : = 4;

/Il invert filter activation for the values of slice field indexed O
fcxSlicel.SliceField[0].IlnverseFilter

/1 set filter activation according to the criterion specified by
ARange
fcxSlicel. SliceFiel d[0]. Set RangeFi | t er (ARange) ;

/1l set filter type to "radio"
SliceField[1].UVFilterType := uvft_Single;

2.5 Group management

Groups improve the representation of the data.

Groups can be edited using the methods and properties of a slice field and the group
manager (GroupManager) of the slice field.

Groups can be edited (created, changed, etc) after turning on the grouping mode
(CanGroup) for the slice field.

Code examples:

© 2014 Fast Reports Inc.

17

FastCube 2.0 Programmer Manual

/1 turn on the groupi ng node
ASl i ceFi el d. CanG oup : = True;
/1l check if we can use groups
if ASliceField.CanGoup then
begin
/]l create a group with nane ' Groupl'
AG oupl ndex := ASliceField. GoupManager. CreateG oup(' G oupl').Index;
/1 add values with index 3 into the group with index AG oupl ndex
ASl i ceFi el d. GroupManager . AddUVI nGr oup(3, AG oupl ndex);
/! add values 30 to the group with index AG oupl ndex
ASl i ceFi el d. G- oupManager . AddUwVal uel nGr oup(30, AG oupl ndex) ;
/1 create pre-defined group "O hers"”
ASl i ceFi el d. GroupManager . Creat eQt her G oup;
end;

© 2014 Fast Reports Inc.

	FastCube 2 Architecture
	Working with FastCube components
	Saving and Loading of Cube and Slice
	Cube data
	Slice settings
	Other settings

	Data loading
	Loading cube from a single database table
	Setting up fields of TfcxDataSource
	Creating and adjusting attributes of TfcxDataSource

	Setting up Slice
	Creating Slice structure
	Measure management

	Filter management
	Group management

