
Version 2025.2.19
© 2008-2025 Fast Reports Inc.

Service solutions
Programmer's Guide

fast-report.com 1 / 101

Introduction
Any code snippets in this documentation are demos only. These examples serve no other purpose than to
illustrate the use of FastReport Cloud, FastReport Corporate Server, and FastReport Publisher. Fast Reports Inc.
does not warrant the accuracy or completeness of these examples and shall not be liable for any direct or
indirect damages that may result from them.

The documentation may contain hyperlinks to various Internet resources. Such links are relevant at the time of
publishing the documentation. Fast Reports Inc. shall not be liable for their availability at the time of reading
the document or any damage caused by them.

fast-report.com 2 / 101

Guides
This section is dedicated to guides for working and integrating FastReport Cloud, FastReport Corporate Server,
and FastReport Publisher into the application. At the moment the guides are available for:

REST API
C#/.NET

The guides for use with other programming languages are in the plans.

Contact us if you are interested in a specific programming language or platform. Contact!

Development tools
The SDKs are available for the following languages:

Haskell
JavaScript
C++
Python
Java
Go
C#/.NET and ASP.NET

Please note, that the development tools are posted as sources on GitHub. To use them, you will need to create
a package or library from the sources yourself.

fast-report.com 3 / 101

mailto:info@fast-report.com
https://github.com/FastReports/FastReport-Cloud-Haskell
https://github.com/FastReports/FastReport-Cloud-JS
https://github.com/FastReports/FastReport-Cloud-Cpp
https://github.com/FastReports/FastReport-Cloud-Python
https://github.com/FastReports/FastReport-Cloud-Java
https://github.com/FastReports/gofrcloud
https://www.nuget.org/packages/FastReport.Cloud.SDK/
https://www.nuget.org/packages/FastReport.Cloud.SDK.Web/

REST API
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This section provides step-by-step instructions and guidelines for performing typical tasks for using Service
solutions without being bound to a specific programming language.

Getting started
You will need the following tools and facilities:

1. Curl tool.

Any other REST client will work, but the examples will be built for curl.

2. FastReport Community Designer.

In some guides, you will need the designer to create the report.

3. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

4. Internet access.

Please note: These guides assume that you already know how to use curl or another REST client.

Note. The items above describe the recommended tools.

What next?
We advise you to start reading the following articles:

Status codes.
Authentication and authorization.

fast-report.com 4 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://github.com/FastReports/FastReport/releases/tag/v2020.4.0

Status codes
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article lists all status codes that can be returned by FastReport Cloud, FastReport Corporate Server, and
FastReport Publisher services.

Request Successfully Processed — 2xx
200 ОК - the request was processed successfully. It is used in most cases when the response body is
returned along with the result.
201 Created - the request was processed successfully. As a result of its execution, a new entity was
created.
204 No Content - the request was processed successfully. An empty response body is returned.

User Error — 4xx
400 Bad Request - the request contains errors, for example:

There is no parameter required to run the request.
The entity Id format is different from Hex 24.
The negative skip or take parameter is in the request.

401 Unauthorized - the request was sent by an unauthorized user.
402 Payment Required - the requested resource is limited by subscription plan.
403 Forbidden - the requested resource is found, but the user does not have permission to perform the
action.
404 Not Found - the requested resource is not found.
413 Request Entity Too Large - request body exceeds the limits in the service settings.

Server Error — 5хх
500 Internal Server Error - the request has passed all validity checks, but an Exception occurred during its
execution. In this case, please inform us by emailing info@fast-report.com

Other
Intermediate services between Service solution and the user may return other status codes.

fast-report.com 5 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
mailto:info@fast-report.com

Authentication and authorization
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

The process of user data authentication and granting user certain rights in Service solutions is carried out in
one of two available ways:

1. Via JWT token.

In this case, authentication must be done manually, and the token will only be valid for 5 minutes, during
which time the user must log in to their application. When connecting to the server, the browser will
redirect to the authentication server and then generate an access token. We restrict the possibility of
retrieving the JWT token to the user personally from a security point of view.

If the user has not logged in to the application within 5 minutes, the authentication must be re-
authenticated. If the user has logged in, re-authentication is not required.

2. Via API key.

In this case, the obtaining of access rights is performed for server applications. To get an API key, a user
must be present. However, the key itself can be valid for a long time, for example, a year.

Retrieve the first API key
To get the first API key, access the user panel. If for some reason you do not have access to the user panel, you
can request a key as described below.

1. Open the link in your browser: <{host_name}/account/signin?r={host_name}/api/manage/v1/ApiKeys>.

If you click on this link, it will direct you to the automatic browser authentication process.

2. Now when authentication has passed, you need to request a new key.

Press F12 or Ctrl+Shift+I to open the developer panel. The key combinations may differ from the default,
in that case open the developer panel via the browser menu

3. Copy and run the code in the JavaScript console.

This code will make a POST request to the URL {host_name}/api/manage/v1/ApiKeys to create a new access
key valid till 2030.

4. Refresh the browser page and get the result.

{
 "apiKeys": [
 {
 "value": "cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey",
 "description": "Generated by js develop panel",
 "expired": "2030-01-01T07:41:23.399Z"
 }
],
 "count": 1
}

You can also create a key by opening the Api keys tab.

Now you can use the API key. In the example above, cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey
was used.
fast-report.com 6 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/user_panel.html

There is no need to retrieve a new API key through the browser again.

How to use the API key
The key should be passed with each request in the header Authorization: Basic . Use apikey as the username and
the key value as the password. For example:

Authorization: Basic Base64Encode(apikey:cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey);

Where Base64Encode is a function for converting a string to base64 when using UTF8 encoding.

Retrieve new API key
To get the new key, execute the POST request to the {host_name}/api/manage/v1/ApiKeys entry point and pass
JSON in the request body according to the scheme below.

{
 "description": "string",
 "expired": "string($date-time)"
}

Example request:

curl -X POST "{host_name}/api/manage/v1/ApiKeys" -H "accept: text/plain" -H "authorization: Basic
YXBpa2V5OmNjMzU1b2V1MXo1ZDV3bmNheW8zM21lNmMxZzVqdW5xZHFrNHBrdXBpZDd0OHluanNoZXk=" -H "Content-
Type: application/json-patch+json" -d "{ \"description\": \"Generated by js develop panel\", \"expired\": \"2030-01-
01T07:41:23.399Z\"}"

Response scheme:

{
 "value": "string",
 "description": "string",
 "expired": "2020-12-02T08:47:43.270Z"
}

You can also get a new key through the user panel.

What next?
Upload new template.
Work with groups.
Add new users to the workspace.

fast-report.com 7 / 101

Upload new template
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

One of the main features of Service solutions is storing templates, reports, and other data in the cloud. This
article will describe how to upload your own template to service solution template storage.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Report template.

It can be created in the free FastReport Community Designer program.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Instruction
1. You need to get the root folder ID of the workspace. This identifier will never change, so you can save it

and you do not need to request the ID every time before uploading a new template.

To request the root directory, execute the GET request to {host_name}/api/rp/v1/Templates/Root .

curl -X GET "{host_name}/api/rp/v1/Templates/Root" -H "accept: text/plain"

In this case, the directory for the default workspace will be returned. You can specify a particular
workspace by passing the subscriptionId parameter.

curl -X GET "{host_name}/api/rp/v1/Templates/Root?subscriptionId=your_workspace_id" -H "accept: text/plain"

Example answer:

fast-report.com 8 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://github.com/FastReports/FastReport/releases/tag/v2024.2.0

{
 "name": "RootFolder",
 "parentId": null,
 "tags": [],
 "icon": "",
 "type": "Folder",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "None",
 "id": "5fa919f9292a8300019349b9",
 "createdTime": "2020-11-09T10:29:13.928Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-11-13T15:58:45.69Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Directory ID from the example above: 5fa919f9292a8300019349b9 .

2. To upload the desired template, execute the POST request to {host_name}/api/rp/v1/Templates/Folder/{id}/File
, where the directory ID should be substituted for {id} and JSON should be passed in the request body
according to the scheme below.

{
 "name": "string",
 "content": "base64encoded(template.frx)"
}

name — name of the file to be displayed in the user panel.

Add the .frx extension to the file name manually.

content — file content encoded in base64.

Example request:

curl -X POST "{host_name}/api/rp/v1/Templates/Folder/5fa919f9292a8300019349b9/File" -H "accept: text/plain" -H
"Content-Type: application/json-patch+json" -d "{ \"name\": \"template.frx\", \"content\":
\"77u/PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiPz4NCjxSZXBvcnQgU2NyaXB0TGFuZ3VhZ2U9IkNTaGF
ycCIgUmVwb3J0SW5mby5DcmVhdGVkPSIxMi8wNC8yMDIwIDEwOjU4OjU3IiBSZXBvcnRJbmZvLk1vZGlmaWVkPSIxMi8w
NC8yMDIwIDExOjAwOjIwIiBSZXBvcnRJbmZvLkNyZWF0b3JWZXJzaW9uPSIyMC4yMC40LjEiPg0KICA8RGljdGlvbmFyeS8+D
QogIDxSZXBvcnRQYWdlIE5hbWU9IlBhZ2UxIiBXYXRlcm1hcmsuRm9udD0iQXJpYWwsIDYwcHQiPg0KICAgIDxSZXBvcnRU
aXRsZUJhbmQgTmFtZT0iUmVwb3J0VGl0bGUxIiBXaWR0aD0iNzE4LjIiIEhlaWdodD0iMzcuOCIvPg0KICAgIDxQYWdlSGVhZ
GVyQmFuZCBOYW1lPSJQYWdlSGVhZGVyMSIgVG9wPSI0MSIgV2lkdGg9IjcxOC4yIiBIZWlnaHQ9IjI4LjM1Ii8+DQogICAgPER
hdGFCYW5kIE5hbWU9IkRhdGExIiBUb3A9IjcyLjU1IiBXaWR0aD0iNzE4LjIiIEhlaWdodD0iNzUuNiI+DQogICAgICA8VGV4dE9
iamVjdCBOYW1lPSJUZXh0MSIgV2lkdGg9IjcxOC4yIiBIZWlnaHQ9Ijc1LjYiIFRleHQ9IkhlbGxvLCBGYXN0UmVwb3J0IENsb3Vk
ISEhIiBIb3J6QWxpZ249IkNlbnRlciIgVmVydEFsaWduPSJDZW50ZXIiIEZvbnQ9IkFyaWFsLCAxMHB0Ii8+DQogICAgPC9EYXR
hQmFuZD4NCiAgICA8UGFnZUZvb3RlckJhbmQgTmFtZT0iUGFnZUZvb3RlcjEiIFRvcD0iMTUxLjM1IiBXaWR0aD0iNzE4LjIiIE
hlaWdodD0iMTguOSIvPg0KICA8L1JlcG9ydFBhZ2U+DQo8L1JlcG9ydD4NCg==\"}"

Example answer:

fast-report.com 9 / 101

{
 "reportInfo": {
 "author": null,
 "created": "2020-12-04T10:58:57",
 "creatorVersion": "20.20.4.1",
 "description": null,
 "modified": "2020-12-04T11:00:20",
 "name": null,
 "picture": null,
 "previewPictureRatio": 0,
 "saveMode": "All",
 "savePreviewPicture": false,
 "tag": null,
 "version": null
 },
 "name": "template.frx",
 "parentId": "5fa919f9292a8300019349b9",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 17159,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "Success",
 "id": "5fc9ece6b792c90001d94b13",
 "createdTime": "2020-12-04T08:01:42.7087229+00:00",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-04T08:01:42.7087112+00:00",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

3. Now this template can be used to prepare (create) a report and export it.

What next?
Access rights management by template example.
Create report.

fast-report.com 10 / 101

Add JSON data source
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article will cover how to create a new JSON-based data source in Service solutions.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. JSON file.

4. JSON scheme.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Create a data source
To create a data source, send CREATE request to {host_name}/api/data/v1/DataSources .

Example request body:

{
 "name": "fakeAPI",
 "connectionString":
"Json=aHR0cHM6Ly9qc29ucGxhY2Vob2xkZXIudHlwaWNvZGUuY29tL3Bvc3Rz;JsonSchema=eyJ0eXBlIjoiYXJyYXkiLCJpdGVtcyI
6eyJ0eXBlIjoib2JqZWN0IiwicHJvcGVydGllcyI6eyJ1c2VySWQiOnsidHlwZSI6Im51bWJlciJ9LCJpZCI6eyJ0eXBlIjoibnVtYmVyIn0sInR
pdGxlIjp7InR5cGUiOiJzdHJpbmcifSwiYm9keSI6eyJ0eXBlIjoic3RyaW5nIn19fX0=;Encoding=utf-8",
 "subscriptionId": "604f52e1261a3c19104c0e25",
 "connectionType": "JSON"
}

Where

name — data source name (it will be displayed in the designer when selected).
connectionString — connection string, in case of JSON, it consists of 3 elements:

Json — JSON file or http/https link encoded in base64;
JsonSchema — schema describing JSON file structure encoded in base64;
Encoding — encoding, it should always be passed to dfg utf-8 .

subscriptionId — ID of the workspace (subscription) to which the data source will be attached.
connectionType — connection type, this guide uses JSON .

Example request:

fast-report.com 11 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

curl -X POST "{host_name}/api/data/v1/DataSources" -H "accept: text/plain" -H "Content-Type: application/json-patch+json"
-d "{ \"name\": \"fakeAPI\", \"connectionString\":
\"Json=aHR0cHM6Ly9qc29ucGxhY2Vob2xkZXIudHlwaWNvZGUuY29tL3Bvc3Rz;JsonSchema=eyJ0eXBlIjoiYXJyYXkiLCJpdGVtcy
I6eyJ0eXBlIjoib2JqZWN0IiwicHJvcGVydGllcyI6eyJ1c2VySWQiOnsidHlwZSI6Im51bWJlciJ9LCJpZCI6eyJ0eXBlIjoibnVtYmVyIn0sInR
pdGxlIjp7InR5cGUiOiJzdHJpbmcifSwiYm9keSI6eyJ0eXBlIjoic3RyaW5nIn19fX0=;Encoding=utf-8\", \"subscriptionId\":
\"604f52e1261a3c19104c0e25\", \"connectionType\": \"JSON\"}"

Example answer:

{
 "id": "60648953db44d83f9c6da98f",
 "name": "fakeAPI",
 "connectionType": "JSON",
 "connectionString":
"Json=aHR0cHM6Ly9qc29ucGxhY2Vob2xkZXIudHlwaWNvZGUuY29tL3Bvc3Rz;JsonSchema=eyJ0eXBlIjoiYXJyYXkiLCJpdGVtcyI
6eyJ0eXBlIjoib2JqZWN0IiwicHJvcGVydGllcyI6eyJ1c2VySWQiOnsidHlwZSI6Im51bWJlciJ9LCJpZCI6eyJ0eXBlIjoibnVtYmVyIn0sInR
pdGxlIjp7InR5cGUiOiJzdHJpbmcifSwiYm9keSI6eyJ0eXBlIjoic3RyaW5nIn19fX0=;Encoding=utf-8",
 "dataStructure": "​<JsonDataSourceConnection
ConnectionString=\"rijcmlqrcq6OJBTPt0pNFvRuRtDUSHSHLQy/QlNolifTTaTjsrExzdbf1ifpPblp655sducwkD1lEVzxVZF8qRuE0NT
6UkyTr7kwjGItFOwh7DBsOyL6QkQY4FOZ2ki8Al2R30gpXs6nMUGg1BRwCF0rj3+QvmXbj+2t8x5RerR5y7inP1R+oCuo0wvfcTe
OMfYfZrjdE3whziFh5Qn3mR7vaevmV9peDWQ3LYyK2ec3KpGVeEXSqM+10WyL4ahY7EHuQIzIZROGFGKfW50cUYwdillhKy24g
NdsUzi5klG66DDQtCKEOLbNutDvA0xqCTW3MvRNORSbvckL6g3gM+cStJ5PQ2XUjF9yz9zdwmramnXI6k+MK8V9lrMkc0XFkDM
HOxDlfG2jHhkFuUTgmiKp7hQMg==\">\r\n <JsonTableDataSource Name=\"JSON\"
DataType=\"FastReport.Data.JsonConnection.JsonParser.JsonArray\" Enabled=\"true\" TableName=\"JSON\">\r\n <Column
Name=\"index\" DataType=\"System.Int32\"/>\r\n <Column Name=\"item\" DataType=\"FastReport.JsonBase\">\r\n
<Column Name=\"userId\" DataType=\"System.Double\"/>\r\n <Column Name=\"id\" DataType=\"System.Double\"/>\r\n
<Column Name=\"title\" DataType=\"System.String\"/>\r\n <Column Name=\"body\" DataType=\"System.String\"/>\r\n
</Column>\r\n <Column Name=\"array\" DataType=\"FastReport.JsonBase\"/>\r\n
</JsonTableDataSource>\r\n</JsonDataSourceConnection>\r\n",
 "subscriptionId": "604f52e1261a3c19104c0e25",
 "editedTime": "2021-03-31T14:38:10.5792982Z",
 "editorUserId": "2df79f83-07f1-41ba-96b5-7757bbf377df",
 "createdTime": "0001-01-01T00:00:00",
 "creatorUserId": "2df79f83-07f1-41ba-96b5-7757bbf377df",
 "isConnected": true
}

fast-report.com 12 / 101

Access rights management by template example
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

Restricting access to private resources is a very important feature of Service solutions. The flexible access
system allows you to restrict or grant rights to each resource separately, specifying the range of people who
can access it

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Report template.

To learn how to upload a report template, refer to the Upload a new template article.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Instruction
1. To view the current rights to the resource, execute the GET request to

{host_name}/api/rp/v1/Templates/File/{id}/permissions , where the template ID should be used instead of {id} .

Example request:

curl -X GET "{host_name}/api/rp/v1/Templates/File/5fc9ece6b792c90001d94b13/permissions" -H "accept: text/plain"

Example answer:

fast-report.com 13 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

{
 "permissions": {
 "ownerId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "owner": {
 "create": "All",
 "delete": "All",
 "execute": "All",
 "get": "All",
 "update": "All",
 "administrate": "All"
 },
 "groups": null,
 "other": {
 "create": "All",
 "delete": "All",
 "execute": "All",
 "get": "All",
 "update": "All",
 "administrate": "All"
 },
 "anon": null
 }
}

In this example, the owner and other members of the workspace have full access to the report template.

2. To change the permissions, execute the POST request to
{host_name}/api/rp/v1/Templates/File/{id}/permissions , where the template ID should be used instead of {id} .

Example model:

{
 "newPermissions": {
 "ownerId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "owner": {
 "create": -1,
 "delete": -1,
 "execute": -1,
 "get": -1,
 "update": 0,
 "administrate": -1
 },
 "other": {
 "create": 0,
 "delete": 0,
 "execute": 0,
 "get": 0,
 "update": 0,
 "administrate": 0
 }
 },
 "administrate": "Owner,Other"
}

Important! In the request to update the rights in the administrate property, the values Owner and Other
were passed in, in this case, only the specified rights categories, i.e., other and owner will be updated,
and the categories anon and groups will not be changed.

Example request that restricts the owner’s right to update the report (e.g., editing in the online designer),
as well as all workspace participants’ rights to the file:

fast-report.com 14 / 101

curl -X POST "{host_name}/api/rp/v1/Templates/File/5fc9ece6b792c90001d94b13/permissions" -H "accept: text/plain"
-H "Content-Type: application/json-patch+json" -d "{ \"newPermissions\": { \"ownerId\": \"5af5a8dc-8cb0-40f9-ac99-
ca2533fa4491\", \"owner\": { \"create\": -1, \"delete\": -1, \"execute\": -1, \"get\": -1, \"update\": 0, \"administrate\": -1
}, \"other\": { \"create\": 0, \"delete\": 0, \"execute\": 0, \"get\": 0, \"update\": 0, \"administrate\": 0 } },
\"administrate\": \"Owner,Other\"}

Example answer:

200 OK

3. Now you can request the permissions again to make sure they are indeed updated.

Example request:

curl -X GET "{host_name}/api/rp/v1/Templates/File/5fc9ece6b792c90001d94b13/permissions" -H "accept: text/plain"

Example answer:

{
 "permissions": {
 "ownerId": "2df79f83-07f1-41ba-96b5-7757bbf377df",
 "owner": {
 "create": "All",
 "delete": "All",
 "execute": "All",
 "get": "All",
 "update": "None",
 "administrate": "All"
 },
 "groups": null,
 "other": {
 "create": "None",
 "delete": "None",
 "execute": "None",
 "get": "None",
 "update": "None",
 "administrate": "None"
 },
 "anon": null
 }
}

What next?
Create report.
Work with groups.
Add new users to the workspace.

fast-report.com 15 / 101

Create report
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article describes the process of creating a report from a template using the Service solutions report
processor.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Report template.

To learn how to upload a report template, refer to the Upload a new template article.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Instruction
1. To create a template, you need its ID. Execute GET request to {host_name}/api/rp/v1/Templates/Root to

retrieve the root directory.

Example request:

curl -X GET "{host_name}/api/rp/v1/Templates/Root" -H "accept: text/plain"

Example answer:

{
 "name": "RootFolder",
 "parentId": null,
 "tags": [],
 "icon": "",
 "type": "Folder",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "None",
 "id": "5fa919f9292a8300019349b9",
 "createdTime": "2020-11-09T10:29:13.928Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-11-13T15:58:45.69Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Directory ID from the example above: 5fa919f9292a8300019349b9 .

2. To get a list of files in the directory, execute GET request to
{host_name}/api/rp/v1/Templates/Folder/{id}/ListFiles?skip=0&take=10 , where the directory ID should be used

fast-report.com 16 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

instead of {id} .

Example request:

curl -X GET "{host_name}/api/rp/v1/Templates/Folder/5fa919f9292a8300019349b9/ListFiles?skip=0&take=10" -H
"accept: text/plain"

Example answer:

[
 {
 "reportInfo": {
 "author": null,
 "created": "2020-12-04T10:58:57Z",
 "creatorVersion": "20.20.4.1",
 "description": null,
 "modified": "2020-12-04T11:00:20Z",
 "name": null,
 "picture": null,
 "previewPictureRatio": 0,
 "saveMode": "All",
 "savePreviewPicture": false,
 "tag": null,
 "version": null
 },
 "name": "template.frx",
 "parentId": "5fa919f9292a8300019349b9",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 17159,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "Success",
 "id": "5fc9ece6b792c90001d94b13",
 "createdTime": "2020-12-04T08:01:42.708Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-04T08:01:42.708Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
 }
]

Template ID from the example above: 5fc9ece6b792c90001d94b13 .

3. To create a report, you will need a directory to store the report in. Request the root report directory by
executing GET request to {host_name}/api/rp/v1/Reports/Root .

Example request:

curl -X GET "{host_name}/api/rp/v1/Reports/Root" -H "accept: text/plain"

Example answer:

fast-report.com 17 / 101

{
 "name": "RootFolder",
 "parentId": null,
 "tags": null,
 "icon": null,
 "type": "Folder",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "None",
 "id": "5fa919f9292a8300019349ba",
 "createdTime": "2020-11-09T10:29:13.993Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "0001-01-01T00:00:00Z",
 "editorUserId": null
}

Directory ID from the example above: 5fa919f9292a8300019349ba .

4. To create a report, execute the POST request to {host_name}/api/rp/v1/Templates/File/{id}/Prepare , where the
template ID should be used instead of {id} .

In the request body, pass JSON according to the scheme below.

{
 "name": "string",
 "folderId": "string",
 "reportParameters": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

folderId — ID of the directory where the report will be placed.
name — name of the resulting file. Add .fpx extension manually.
reportParameters — parameters that are specified in the report itself via the report designer, they are
not needed in this example.

If you do not specify folderId, the generated report will be saved to the root folder.

Example request:

curl -X POST "{host_name}/api/rp/v1/Templates/File/5fc9ece6b792c90001d94b13/Prepare" -H "accept: text/plain" -H
"Content-Type: application/json-patch+json" -d "{ \"name\": \"awesome_report.fpx\", \"folderId\":
\"5fa919f9292a8300019349ba\"}"

Example answer:

fast-report.com 18 / 101

{
 "templateId": "5fc9ece6b792c90001d94b13",
 "reportInfo": null,
 "name": "awesome_report.fpx",
 "parentId": "5fa919f9292a8300019349ba",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "InQueue",
 "id": "5fe4614bcd7c55000148e4c6",
 "createdTime": "2020-12-24T09:37:15.7169531+00:00",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T09:37:15.7169582+00:00",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Pay attention to the status of the InQueue file, it means that the task for generation has been created and
then it has been added to the builder’s queue. Already at this stage the report has received its ID for work:
5fe4614bcd7c55000148e4c6 .

You should wait a while for the report to be generated. You can call the method of getting the report in a loop
every few milliseconds and check the report status.

5. For information about the report, execute the GET request to {host_name}/api/rp/v1/Reports/File/{id} , where
the report ID should be used instead of {id} .

Example request:

curl -X GET "{host_name}/api/rp/v1/Reports/File/5fe4614bcd7c55000148e4c6" -H "accept: text/plain"

Example answer:

{
 "templateId": "5fc9ece6b792c90001d94b13",
 "reportInfo": null,
 "name": "awesome_report.fpx",
 "parentId": "5fa919f9292a8300019349ba",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 16927,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "Success",
 "id": "5fe4614bcd7c55000148e4c6",
 "createdTime": "2020-12-24T09:37:15.716Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T09:37:15.716Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Note the status of the Success file. The report was successfully generated.

6. To download the report, execute the GET request to {host_name}/download/r/{id} , where the report ID
should be passed instead of {id} .

Example request:

curl -X GET "{host_name}/download/r/5fe4614bcd7c55000148e4c6" -H "accept: text/plain"

The file will be received in the response.
fast-report.com 19 / 101

What next?
Export report to PDF.

Note! In the examples there may be no Authorization header because a cookie-based authentication model
is used. For more information about authorization, read the Authentication and authorization section.

fast-report.com 20 / 101

Report parameters
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of passing parameters to a report, which are a dictionary of parameters
provided when generating a report. More information on this can be found in the FastReport .NET guide in the
Report parameters section.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Report template.

It can be created in the free FastReport Community Designer program.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Pass parameters to the report
Parameters can be passed when:

preparing a report;
exporting from a template;
working with tasks.

Let’s consider parameter passing on the example of report generation. Detailed instructions on how to create a
report can be found in the Create report section.

To create a report, execute the POST request to the {host_name}/api/rp/v1/Templates/File/{id}/Prepare , where the
template ID should be used instead of {id} .

In the request body, pass JSON according to the scheme below.

{
 "name": "string",
 "folderId": "string",
 "reportParameters": {
 "additionalProp1": "string",
 "additionalProp2": "string"
 }
}

folderId — ID of the directory where the report will be placed.
name — name of the resulting file. Add .fpx extension manually.
reportParameters — parameters that are specified in the report itself using the report designer.

fast-report.com 21 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://www.fast-report.com/public_download/docs/FRNet/online/en/UserManual/en-US/Data/ReportParameters.html
https://github.com/FastReports/FastReport/releases/tag/v2024.2.0

If you do not specify folderId, the generated report will be saved to the root folder.

Example request:

curl -X POST "{host_name}/api/rp/v1/Templates/File/5fc9ece6b792c90001d94b13/Prepare"
-H "accept: text/plain"
-H "Content-Type: application/json-patch+json"
-d "{
 "name": "awesome_report.fpx",
 "folderId": "5fa919f9292a8300019349ba",
 "reportParameters": {
 "Parameter1": "Value1",
 "Parameter2": "Value2"
 }
 }"

Example answer:

{
 "templateId": "5fc9ece6b792c90001d94b13",
 "name": "awesome_report.fpx",
 "parentId": "5fa919f9292a8300019349ba",
 "type": "File",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "InQueue",
 "statusReason": "None",
 "id": "5fe4614bcd7c55000148e4c6",
 "createdTime": "2020-12-24T09:37:15.7169531+00:00",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T09:37:15.7169582+00:00",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

fast-report.com 22 / 101

Export report to PDF
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of exporting a report using the Service solutions report processor.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions. How to retrieve and use API key you can learn in the
Authentication and authorization article.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Report template.

To learn how to upload a report template, refer to the Upload a new template article.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Annotation
Note, that you can export the report directly from the template without saving the report. To do this, run the
same commands for the report template, replacing Report in the query strings with Template , and use the
template ID rather than the report ID.

Instruction
1. You will need the report ID to export to PDF. Execute the GET request to {host_name}/api/rp/v1/Report/Root

to retrieve the root directory.

Example request:

curl -X GET "{host_name}/api/rp/v1/Reports/Root" -H "accept: text/plain"

Example answer:

fast-report.com 23 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

{
 "name": "RootFolder",
 "parentId": null,
 "tags": null,
 "icon": null,
 "type": "Folder",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "None",
 "id": "5fa919f9292a8300019349ba",
 "createdTime": "2020-11-09T10:29:13.993Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "0001-01-01T00:00:00Z",
 "editorUserId": null
}

Directory ID from the example above: 5fa919f9292a8300019349ba .

2. Retrieve a list of the files in the directory by executing GET request to
{host_name}/api/rp/v1/Reports/Folder/{id}/ListFiles?skip=0&take=10 , where the directory ID should be used
instead of {id} .

Example request:

curl -X GET "{host_name}/api/rp/v1/Reports/Folder/5fa919f9292a8300019349ba/ListFiles?skip=0&take=10" -H
"accept: text/plain"

Example answer:

[
 {
 "templateId": "5fc9ece6b792c90001d94b13",
 "reportInfo": null,
 "name": "awesome_report.fpx",
 "parentId": "5fa919f9292a8300019349ba",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 16927,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "Success",
 "id": "5fe4614bcd7c55000148e4c6",
 "createdTime": "2020-12-24T09:37:15.716Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T09:37:15.716Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
 }
]

Report ID from the example above: 5fe4614bcd7c55000148e4c6 .

3. To export the report, you will need a directory in which to place the export file.

Retrieve the root directory of the exports; to do this, execute GET request to
{host_name}/api/rp/v1/Exports/Root .

Example request:

curl -X GET "{host_name}/api/rp/v1/Exports/Root" -H "accept: text/plain"

Example answer:

fast-report.com 24 / 101

{
 "name": "RootFolder",
 "parentId": null,
 "tags": null,
 "icon": null,
 "type": "Folder",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "None",
 "id": "5fa919fa292a8300019349bb",
 "createdTime": "2020-11-09T10:29:14.002Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "0001-01-01T00:00:00Z",
 "editorUserId": null
}

Directory ID from the example above: 5fa919fa292a8300019349bb .

4. To export the report, execute the POST request to {host_name}/api/rp/v1/Reports/File/{id}/Export , where
report ID should be used instead of {id} .

In the request body, pass JSON according to the scheme below.

{
 "fileName": "awesome_result.pdf",
 "folderId": "5fa919fa292a8300019349bb",
 "locale": "en-GB",
 "format": "Pdf",
 "exportParameters": {
 "additionalProp1": {},
 "additionalProp2": {},
 "additionalProp3": {}
 }
}

folderId — ID of the directory where the export will be placed. If left blank, the export will be placed in
the root folder for exports in the workspace.
fileName — name of the resulting file. If you do not specify the extension, or specify it incorrectly, the
server will replace it by itself.
locale — localization of the exported report. This option will change the date and number formats to
those corresponding to the selected ISO code (e.g., French (Switzerland) looks like “fr-CH”). If you
leave this field empty or specify a non-existent country, the default locale from the subscription or
English (USA) will be substituted in case the default locale is not specified.
format — export format.
exportParameters — export parameters. They are set similarly to the export parameters from the
FastReport .NET library. A more detailed description is stored in the user documentation in the export
parameters section.

If you do not specify folderId, the generated report will be saved to the root folder.

Example request:

curl -X POST "{host_name}/api/rp/v1/Reports/File/5fe4614bcd7c55000148e4c6/Export" -H "accept: text/plain" -H
"Content-Type: application/json-patch+json" -d "{ \"fileName\": \"awesome_result.pdf\", \"folderId\":
\"5fa919fa292a8300019349bb\", \"locale\":\"ru-RU\", \"format\": \"Pdf\"}"

Example answer:

fast-report.com 25 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/fastreport_service_description/exports/export_parameters.html

{
 "format": "Pdf",
 "reportId": "5fe4614bcd7c55000148e4c6",
 "name": "awesome_result.pdf",
 "parentId": "5fa919fa292a8300019349bb",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 16384,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "InQueue",
 "id": "5fe46a33cd7c55000148e4c7",
 "createdTime": "2020-12-24T10:15:15.8039648+00:00",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T10:15:15.8039697+00:00",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Please note the status of the InQueue file, it means that the task for export has been created and it has
been added to the builder's queue. Already at this stage the file has received its ID for work
5fe46a33cd7c55000148e4c7 .

You should wait a while for the export to be completed.

5. For information about the file, execute the GET request to {host_name}/api/rp/v1/Exports/File/{id} , where the
export ID should be used instead of {id} .

Example request:

curl -X GET "{host_name}/api/rp/v1/Exports/File/5fe46a33cd7c55000148e4c7" -H "accept: text/plain"

Example answer:

{
 "format": "Pdf",
 "reportId": "5fe4614bcd7c55000148e4c6",
 "name": "awesome_result.pdf",
 "parentId": "5fa919fa292a8300019349bb",
 "tags": null,
 "icon": null,
 "type": "File",
 "size": 41142,
 "subscriptionId": "5fa919fa292a8300019349bc",
 "status": "Success",
 "id": "5fe46a33cd7c55000148e4c7",
 "createdTime": "2020-12-24T10:15:15.803Z",
 "creatorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "editedTime": "2020-12-24T10:15:15.803Z",
 "editorUserId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
}

Note the status of the Success file. The report was successfully exported.

6. To download a report, execute the GET request to {host_name}/download/e/{id} , where the report ID should
be passed instead of {id} .

Example request:

curl -X GET "{host_name}/download/e/5fe46a33cd7c55000148e4c7" -H "accept: text/plain"

The file will be received in the response.

fast-report.com 26 / 101

What next?
Work with groups.
Add new users to the workspace.

Note! In the examples there may be no Authorization header because a cookie-based authentication model
is used. For more information about authorization, read the Authentication and authorization section.

fast-report.com 27 / 101

Add new users to the workspace
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of adding a new user to a workspace, retrieving the list of users in the
workspace, and removing a user from it.

Each workspace always has a subscription associated with it. They have a common ID.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher. The subscription must have at least two user slots.

4. Internet access.

Instruction
There are two ways to add a user to a workspace:

Directly by specifying the user ID.
Using the invitation system.

Add a user via invitation

1. To create an invitation, you need a workspace ID.

Retrieve the workspace ID by executing GET request to
{host_name}/api/manage/v1/Subscriptions?skip=0&take=10 .

Example request:

curl -X GET "{host_name}/api/manage/v1/Subscriptions?skip=0&take=10" -H "accept: text/plain"

Example answer:

fast-report.com 28 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

{
 "subscriptions": [
 {
 "id": "604f52e1261a3c19104c0e25",
 "name": "iwantpizza",
 "locale": null,
 "current": {
 "startTime": "2021-03-15T12:28:17.773Z",
 "endTime": "2121-03-15T12:28:17.773Z",
 "plan": {
 "id": "5f89b4d722d2d823440b6d10",
 "isActive": false,
 "displayName": "unlimited",
 "timePeriodType": "Year",
 "timePeriod": 100,
 "readonlyTimeLimitType": "Second",
 "readonlyTimeLimit": 0,
 "templatesSpaceLimit": 1048576000,
 "reportsSpaceLimit": 1048576000,
 "exportsSpaceLimit": 1048576000,
 "fileUploadSizeLimit": 1073741824,
 "dataSourceLimit": 10,
 "maxUsersCount": 10,
 "groupLimit": 5,
 "onlineDesigner": true,
 "isDemo": false,
 "urlToBuy": "https://www.fast-report.com/",
 "unlimitedPage": true,
 "pageLimit": 0
 }
 },
 "old": null,
 "invites": null,
 "templatesFolder": {
 "folderId": "604f52e1261a3c19104c0e22",
 "bytesUsed": 241247
 },
 "reportsFolder": {
 "folderId": "604f52e1261a3c19104c0e23",
 "bytesUsed": 16384
 },
 "exportsFolder": {
 "folderId": "604f52e1261a3c19104c0e24",
 "bytesUsed": 8059419
 }
 }
],
 "count": 1,
 "skip": 0,
 "take": 10
}

Workspace (subscription) ID from the example above: 604f52e1261a3c19104c0e25 .

2. To create an invitation, execute the POST request to
{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/invite , where the workspace ID will be specified
instead of {subscriptionId} .

By specifying the invitation properties in the request body.

Example body:

fast-report.com 29 / 101

{
 "usages": 1,
 "durable": true,
 "expiredDate": "2021-03-25T11:53:29.351Z"
}

usages - possible number of uses;

durable - if it is set to true, it indicates that the number of uses is not limited;

expiredDate - it indicates the expiration date of the invitation (the invitation without this field is valid
forever);

If you leave the body empty, it will create a one-time invitation valid until the next day.

Example request:

curl -X POST "{host_name}/api/manage/v1/Subscriptions/604f52e1261a3c19104c0e25/invite" -H "accept: text/plain" -
H "Content-Type: application/json-patch+json" -d "{ \"usages\": 1, \"durable\": true, \"expiredDate\": \"2021-03-
25T11:53:29.351Z\"}"

Example answer:

fast-report.com 30 / 101

{
 "id": "604f52e1261a3c19104c0e25",
 "name": "iwantpizza",
 "locale": null,
 "current": {
 "startTime": "2021-03-15T12:28:17.773Z",
 "endTime": "2121-03-15T12:28:17.773Z",
 "plan": {
 "id": "5f89b4d722d2d823440b6d10",
 "isActive": false,
 "displayName": "unlimited",
 "timePeriodType": "Year",
 "timePeriod": 100,
 "readonlyTimeLimitType": "Second",
 "readonlyTimeLimit": 0,
 "templatesSpaceLimit": 1048576000,
 "reportsSpaceLimit": 1048576000,
 "exportsSpaceLimit": 1048576000,
 "fileUploadSizeLimit": 1073741824,
 "dataSourceLimit": 10,
 "maxUsersCount": 10,
 "groupLimit": 5,
 "onlineDesigner": true,
 "isDemo": false,
 "urlToBuy": "https://www.fast-report.com",
 "unlimitedPage": true,
 "pageLimit": 0
 }
 },
 "old": null,
 "invites": [
 {
 "usages": 1,
 "durable": true,
 "accessToken": "fj3534g341ir7dyytfiaap9z1r",
 "expiredDate": "2021-03-25T11:53:29.351Z",
 "addedUsers": [],
 "creatorUserId": "2df79f83-07f1-41ba-96b5-7757bbf377df"
 }
],
 "templatesFolder": {
 "folderId": "604f52e1261a3c19104c0e22",
 "bytesUsed": 241247
 },
 "reportsFolder": {
 "folderId": "604f52e1261a3c19104c0e23",
 "bytesUsed": 16384
 },
 "exportsFolder": {
 "folderId": "604f52e1261a3c19104c0e24",
 "bytesUsed": 8059419
 }
}

The invitation with access token appeared in the subscription: fj3534g341ir7dyytfiaap9z1r .

3. You need to pass the link to accept the invitation (or the access token itself) to the user you want to invite
(in any way you like). The final link will look like this:
{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/invite/{accessToken}/accept , where the workspace ID
should be specified instead of {subscriptionId} , and the access token should be specified instead of
{accessToken} .

4. Now the invited user can click on this link directly in the browser or the execute GET request to

fast-report.com 31 / 101

{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/invite/{accessToken}/accept , where instead of
{subscriptionId} the workspace ID should be specified, and the access token should be specified instead of
{accessToken} .

Example request:

curl -X GET "https://xn--80ab2acne.xn--e1aflibyb2b0b.xn--
p1ai/api/manage/v1/Subscriptions/6051f2a06c07a10001737394/invite/to9kxrxdz4iwbfyz3pq4fktdcr/accept" -H
"accept: text/plain"

Delete the invitation

When an invitation runs out of uses or expires, it is not automatically deleted. You will need to do this
manually by sending DELETE request to
{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/invite/{accessToken} .

Example request:

curl -X DELETE "https://xn--80ab2acne.xn--e1aflibyb2b0b.xn--
p1ai/api/manage/v1/Subscriptions/6051f2a06c07a10001737394/invite/to9kxrxdz4iwbfyz3pq4fktdcr" -H "accept:
text/plain"

An empty message with the code NO CONTENT 204 will be received in response.

Add a user directly

1. To add a new user to a workspace, a workspace ID is required.

Retrieve the subscription ID by executing GET request to
{host_name}/api/manage/v1/Subscriptions?skip=0&take=10 .

Example request:

curl -X GET "{host_name}/api/manage/v1/Subscriptions?skip=0&take=10" -H "accept: text/plain"

Example answer:

fast-report.com 32 / 101

{
 "subscriptions": [
 {
 "id": "5fa919fa292a8300019349bc",
 "name": "Awesome Corp",
 "current": {
 "startTime": "2020-11-17T10:22:58.584Z",
 "endTime": "2025-11-17T10:22:58.584Z",
 "plan": {
 "id": "5f43924b0231500001225686",
 "isActive": false,
 "displayName": "The greatest power",
 "timePeriodType": "Year",
 "timePeriod": 5,
 "readonlyTimeLimitType": "Second",
 "readonlyTimeLimit": 0,
 "templatesSpaceLimit": 1048576000,
 "reportsSpaceLimit": 1048576000,
 "exportsSpaceLimit": 1048576000,
 "fileUploadSizeLimit": 1048576000000,
 "dataSourceLimit": 10,
 "maxUsersCount": 10,
 "groupLimit": 5,
 "onlineDesigner": true,
 "isDemo": false,
 "urlToBuy": "https://www.fast-report.com",
 "unlimitedPage": true,
 "pageLimit": 15
 }
 },
 "old": [],
 "templatesFolder": {
 "folderId": "5fa919f9292a8300019349b9",
 "bytesUsed": 1668491
 },
 "reportsFolder": {
 "folderId": "5fa919f9292a8300019349ba",
 "bytesUsed": 6085990
 },
 "exportsFolder": {
 "folderId": "5fa919fa292a8300019349bb",
 "bytesUsed": 8336710
 }
 }
],
 "count": 1,
 "skip": 0,
 "take": 10
}

Workspace (subscription) ID from the example above: 5fa919fa292a8300019349bc .

2. To add a new user, execute PUT request to
{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/users/{userId} , where the workspace ID should be
passed instead of {subscriptionId} , and the user ID should be passed instead of {userId} .

Example request:

curl -X PUT "{host_name}/api/manage/v1/Subscriptions/5fa919fa292a8300019349bc/users/5af5a8dc-8cb0-40f9-ac99-
ca2533fa4492" -H "accept: text/plain"

In response you will receive an empty message with the OK 200 status code.

fast-report.com 33 / 101

3. To retrieve the list of users, execute GET request to
{host_name}/api/manage/v1/Subscriptions/{id}/users?skip=0&take=10 , where the workspace ID should be used
instead of {id} .

Example request:

curl -X GET "{host_name}/api/manage/v1/Subscriptions/5fa919fa292a8300019349bc/users?skip=0&take=10" -H
"accept: text/plain"

Example answer:

{
 "users": [
 {
 "userId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491"
 },
 {
 "userId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4492"
 }
],
 "count": 2,
 "take": 10,
 "skip": 0
}

4. To remove a user from the workspace, execute DELETE request to
{host_name}/api/manage/v1/Subscriptions/{subscriptionId}/users/{userId} , where instead of {subscriptionId} the
workspace ID should be used, and instead of {userId} - user ID.

Example request:

curl -X DELETE "{host_name}/api/manage/v1/Subscriptions/5fa919fa292a8300019349bc/users/5af5a8dc-8cb0-40f9-
ac99-ca2533fa4492" -H "accept: text/plain"

In response you will receive an empty message with the OK 200 status code.

What next?
Work with groups
Help and feedback

fast-report.com 34 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/help.html

Work with groups
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of creating a new group, adding a user to the group, and retrieving the list of
users in it.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher. The subscription must have at least two user slots.

4. Internet access.

Annotation
Important! You can add a user to a group only if the user exists in the workspace.

Important! It is possible to add a user to a group only by their user ID.

Instruction
1. To create a new group, you need a workspace ID and the name of the new group.

Retrieve the workspace ID by executing GET request to
{host_name}/api/manage/v1/Subscriptions?skip=0&take=10 .

Example request:

curl -X GET "{host_name}/api/manage/v1/Subscriptions?skip=0&take=10" -H "accept: text/plain"

Example answer:

fast-report.com 35 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

{
 "subscriptions": [
 {
 "id": "5fa919fa292a8300019349bc",
 "name": "Awesome Corp",
 "current": {
 "startTime": "2020-11-17T10:22:58.584Z",
 "endTime": "2025-11-17T10:22:58.584Z",
 "plan": {
 "id": "5f43924b0231500001225686",
 "isActive": false,
 "displayName": "The greatest power",
 "timePeriodType": "Year",
 "timePeriod": 5,
 "readonlyTimeLimitType": "Second",
 "readonlyTimeLimit": 0,
 "templatesSpaceLimit": 1048576000,
 "reportsSpaceLimit": 1048576000,
 "exportsSpaceLimit": 1048576000,
 "fileUploadSizeLimit": 1048576000000,
 "dataSourceLimit": 10,
 "maxUsersCount": 10,
 "groupLimit": 5,
 "onlineDesigner": true,
 "isDemo": false,
 "urlToBuy": "https://www.fast-report.com/",
 "unlimitedPage": true,
 "pageLimit": 15
 }
 },
 "old": [],
 "templatesFolder": {
 "folderId": "5fa919f9292a8300019349b9",
 "bytesUsed": 1668491
 },
 "reportsFolder": {
 "folderId": "5fa919f9292a8300019349ba",
 "bytesUsed": 6085990
 },
 "exportsFolder": {
 "folderId": "5fa919fa292a8300019349bb",
 "bytesUsed": 8336710
 }
 }
],
 "count": 1,
 "skip": 0,
 "take": 10
}

Workspace (subscription) ID from the example above: 5fa919fa292a8300019349bc .

2. To create a new group, execute the POST request to {host_name}/api/manage/v1/Groups , pass JSON into the
request body according to the scheme below.

{
 "name": "string",
 "subscriptionId": "string id"
}

Example request:

fast-report.com 36 / 101

curl -X POST "{host_name}/api/manage/v1/Groups" -H "accept: text/plain" -H "Content-Type: application/json-
patch+json" -d "{ \"name\": \"My first group\", \"subscriptionId\": \"5fa919fa292a8300019349bc\"}"

Example answer:

{
 "id": "5fe5d7866882ca0001760fcb",
 "name": "My first group",
 "subscriptionId": "5fa919fa292a8300019349bc"
}

Group ID from the example above: 5fe5d7866882ca0001760fcb .

3. To add a new user to the group, execute PUT request to
{host_name}/api/manage/v1/Groups/{groupId}/Users/{userId} , where the group ID should be specified instead
of {groupId} , and user ID - instead of {userId} .

Example request:

curl -X PUT "{host_name}/api/manage/v1/Groups/5fe5d7866882ca0001760fcb/Users/5af5a8dc-8cb0-40f9-ac99-
ca2533fa4492" -H "accept: text/plain"

In response you will receive an empty message with the OK 200 code.

4. To retrieve a list of users in the group, execute GET request to
{host_name}/api/manage/v1/Groups/{id}/Users?skip=0&take=10 , where group ID should be specified instead of
{id} .

Example request:

curl -X GET "{host_name}/api/manage/v1/Groups/5fe5d7866882ca0001760fcb/Users?skip=0&take=10" -H "accept:
text/plain"

Example answer:

{
 "users": [
 {
 "userId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4491",
 "userId": "5af5a8dc-8cb0-40f9-ac99-ca2533fa4492"
 }
],
 "count": 2,
 "take": 10,
 "skip": 0
}

What next?
Help and feedback

Note! In the examples there may be no Authorization header because a cookie-based authentication model
is used. For more information about authorization, read the Authentication and authorization section.

fast-report.com 37 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/help.html

Work with tasks
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

Tasks in Service solutions are actions to convert and deliver documents to consumers. They are described in
detail in the Tasks section.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. Curl tool.

Any other REST client will work, but the examples will be built for curl.

3. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher. The subscription must have at least two user slots.

4. Internet access.

fast-report.com 38 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/fastreport_service_description/tasks_info.html

General Information
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the types of tasks and how to work with them.

Task Classification
Tasks in Service solutions are divided into 2 types by launch method:

1. Stored tasks;
2. Tasks executed from request body.

Stored tasks are tasks that are saved in the database and can be run later. They allow executing tasks on
demand or at a scheduled time. Such tasks are displayed in the "Tasks" section of the Service solutions web
interface.

Tasks executed from request body are not saved in the database and are executed immediately. They are
useful for one-time requests. For example, when building a PDF document and sending it via email through the
API from a third-party application. This way you can quickly add report and document creation and sending
functionality to your application written in any programming language.

fast-report.com 39 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

Stored Tasks
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

As mentioned in the previous section, Service solutions provides the ability to create tasks that are saved in
the database and can be run later. These tasks are called stored tasks.

Let's look in detail at how to create, update, and run stored tasks using the REST API.

About ViewModels and Types
When working, you will pass different ViewModels in JSON format. It is important that the first field of any
ViewModel should be "$t": "Name". Detailed examples will be provided below in this article.

View Models for Creating Tasks

View Models for creating transformer tasks:

CreatePrepareTaskVM
CreateExportTemplateTaskVM
CreateExportReportTaskVM

View Models for creating transport tasks:

CreateEmailTaskVM
CreateWebhookTaskVM
CreateFTPUploadTaskVM
CreateS3UploadTaskVM

View Models for creating other tasks:

CreateFetchTaskVM

View Models for Updating Properties of Stored Tasks

View Models for updating transformer tasks:

UpdatePrepareTaskVM
UpdateExportTemplateTaskVM
UpdateExportReportTaskVM

View Models for updating transport tasks:

UpdateEmailTaskVM
UpdateWebhookTaskVM
UpdateFTPUploadTaskVM
UpdateS3UploadTaskVM

View Models for updating other tasks:

UpdateFetchTaskVM

View Model for Updating Task Permissions:
UpdateTaskPermissionsVM

Creating a Task

fast-report.com 40 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

To create tasks, you should use the CreateTask method. It accepts a View Model for creating tasks.

Let's look at creating a report export task followed by email sending:

 curl -X 'POST' \
 'https://{host_name}/api/tasks/v1/tasks' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{
 "$t": "CreateExportTemplateTaskVM",
 "subscriptionId": "23e0134c816935c1e11b3737",
 "name": "SendViaWebhookExport",
 "inputFile": {
 "entityId": "61e0134c816935c1e11b3787"
 },
 "transports": [
 {
 "$t": "CreateEmailTaskVM",
 "name": "Email sending task",
 "from": "admin@company.com",
 "to": ["user@company.com", "seller@company.com"],
 "subject": "Important report",
 "body": "An important report is attached to this email.",
 "EnableSsl": true,
 "username": "admin@company.com",
 "password": "parol123",
 "server": "smtp.company.com",
 "port": 587
 }
],
 "format": "Pdf"
}'

In the EntityId and FolderId fields, you should enter real object identifiers. Otherwise, the task will be
terminated with an error.

Note! If you don't specify OutputFile, it will be saved to a temporary folder. If you specify an empty
OutputFile - to the root folder. If you specify a folder id - to that folder.

A list of all available ViewModels is available at the link - https://{host_name}/api/swagger/index.html

Running Tasks on Schedule
To configure task execution on a schedule, you need to specify the following fields:

cronExpression
startsOn
ends

cronExpression - a string containing a cron expression that defines the task execution schedule.

startsOn - the date and time from which scheduled task execution begins (in user's timezone).

ends - an object containing the date and time until which the task will be executed on schedule (on) or the
number of repetitions (after). The on field is specified in user's timezone. If neither the after nor the on field is
specified, the task will run indefinitely.

Example of creating a task that runs on schedule:

fast-report.com 41 / 101

 curl -X 'POST' \
 'https://{host_name}/api/tasks/v1/tasks' \
 -H 'accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{
 "$t": "CreateExportTemplateTaskVM",
 "subscriptionId": "23e0134c816935c1e11b3737",
 "name": "SendViaWebhookExport",
 "inputFile": {
 "entityId": "61e0134c816935c1e11b3787"
 },
 "transportIds": [
 "68767аef184dcf225ca085e1"
],
 "format": "Pdf",
 "cronExpression": "*/5 * * * *", # Run every 5 minutes
 "startsOn": "2025-10-01T00:00:00Z", # Start from October 1, 2025
 "ends": {
 "on": "2025-12-31T23:59:59Z" # End on December 31, 2025
 }
}'

In this example, the task will run every 5 minutes, starting from October 1, 2025 and ending on December 31,
2025.

To make the task execute, for example, 10 times, you need to replace the on field with the after field:

"cronExpression": "*/5 * * * *", # Run every 5 minutes
 "startsOn": "2025-10-01T00:00:00Z", # Start from October 1, 2025
 "ends": {
 "after": 10 # Execute 10 times"
 }

Getting Task List
 // Getting the first ten tasks from the workspace
 curl -X 'GET' \
 'https://{host_name}/api/tasks/v1/tasks?skip=0&take=10' \
 -H 'accept: application/json'

Editing Task
After a task is created, you can change some of its parameters.

// Editing task
curl --location --request PUT 'https://{host_name}/api/tasks/v1/Tasks/{task id}' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic {base64(apikey:api-key-value)}' \
--data '{
 "$t": "UpdateExportTemplateTaskVM",
 "reportParameters": {
 "param1": "val1",
 "param2": "val2"
 },
 "transportIds" : ["{transport task id (email sending, FTP upload, etc.)}"]
}'

Note that when updating a task, you need to specify transportIds - a list of transport task identifiers (Email, FTP,
Webhook, S3), not the tasks themselves. The task itself can be created in advance either separately or when
fast-report.com 42 / 101

creating a transformer task. For more details on creating them, read the section Creating Transport Tasks.

Executing Task by Specified Identifier
 curl -X 'POST' \
 'https://{host_name}/api/tasks/v1/tasks/42d134ae3130aaad37by345f/run' \
 -H 'accept: */*' \
 -d ''

Deleting Task from Storage
curl -X 'DELETE' \
 'https://{host_name}/api/tasks/v1/tasks/42d134ae3130aaad37by345f' \
 -H 'accept: */*'

fast-report.com 43 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/programmer/guides/rest_api/rest_tasks/transports/rest_email.html

Tasks Executed from Request Body
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

As mentioned in the previous section, Service solutions provides the ability to run tasks without prior saving.
To do this, you should make a POST request to the path /api/tasks/v1/Tasks/run , passing all the necessary data in
the request.

For example, to build a PDF document and send it via FTP, you need to pass data such as the template
identifier (entityId) or the template itself (content) in the inputFile object, as well as data for connecting to the
FTP server.

Let's look in detail at how to work with such tasks using the REST API.

About ViewModels and Types
When working, you will pass different ViewModels in JSON format. It is important that the first field of any
ViewModel should be "$t": "Name". Detailed examples will be provided below in this article.

View Models for running Tasks On-the-Fly (without saving)

View Models for running transformer tasks on-the-fly:

RunPrepareTaskVM
RunExportTemplateTaskVM
RunExportReportTaskVM

View Models for running transport tasks on-the-fly:

RunEmailTaskVM
RunWebhookTaskVM
RunFTPUploadTaskVM
RunS3UploadTaskVM

View Models for running other tasks on-the-fly:

RunFetchTaskVM

Running a Task on-the-Fly (from request body)
To run a task on-the-fly, you should use the RunTask method.

Let's look at running a report export task followed by saving to S3 storage:

fast-report.com 44 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

 curl --location 'https://{host_name}/api/tasks/v1/tasks/run' \
--header 'accept: application/json' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic {base64(apikey:api-key-value)}' \
--data '{
 "$t": "RunExportTemplateTaskVM",
 "subscriptionId": "{workspace id}",
 "inputFile": {
 "$t": "RunInputFileVM",
 "entityId": "{template id}",
 "type" : "Template",
 "fileName": "Template.frx"
 },
 "format": "Pdf",
 "transports": [
 {
 "$t": "RunS3UploadTaskVM",
 "accessKey": "{public_access_key}",
 "secretKey": "{secret_access_key}",
 "bucketName": "storage",
 "destinationFolder": "test",
 "useAws": true,
 "enableSsl": true,
 "region": "us-east-1"
 }
]
}'

In the EntityId field, you should enter real object identifiers. Otherwise, the task will be terminated with an
error.

Also, instead of it, in the inputFile object you can pass the template content in the content field as a Base64
string.

A list of all available ViewModels is available at the link - https://{host_name}/api/swagger/index.html

fast-report.com 45 / 101

C# .NET
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This section provides step-by-step instructions and guides for performing typical Service solutions application
tasks using the C#/.NET programming language and FastReport.Cloud.SDK.

Getting started
You will need the following tools and facilities.

1. .NET SDK.

2. C# code editor or text editor, e.g., Visual Studio Code.

3. FastReport Community Designer.

For some guides, you will need a designer to create the report.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

5. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Install and configure
To connect the SDK, you should install the FastReport.Cloud.SDK package of the latest stable version. This can
be done by running the following command.

dotnet add package FastReport.Cloud.SDK

To add ASP.NET support, install the package FastReport.Cloud.SDK.Web .

dotnet add package FastReport.Cloud.SDK.Web

You should also add a line to the Startup class.

services.AddFastReportCloud();

What next?
We advise you to start reading the following articles:

Status codes.
Authentication and authorization.

fast-report.com 46 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2020.4.0

Authentication and authorization
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

The process of user data authentication and granting user certain rights in Service solutions is carried out in
one of two available ways:

1. Via JWT token.

In this case, authentication must be done manually, and the token will only be valid for 5 minutes, during
which time the user must log in to their application. When connecting to the server, the browser will
redirect to the authentication server and then generate an access token. We restrict the possibility of
retrieving the JWT token to the user personally from a security point of view.

If the user has not logged in to the application within 5 minutes, the authentication must be re-
authenticated. If the user has logged in, re-authentication is not required.

2. Via API key.

In this case, the obtaining of access rights is performed for server applications. To get an API key, a user
must be present. However, the key itself can be valid for a long time, for example, a year.

Retrieve the first API key
To get the first API key, access the user panel. If for some reason you do not have access to the user panel, you
can request a key as described below.

The easiest way to retrieve a key is to open the Api keys tab and create one on this page.

Option 2:

1. Open the link in your browser: <{host_name}/account/signin?r={host_name}/api/manage/v1/ApiKeys>.

If you click on this link, it will direct you to the automatic browser authentication process.

2. Now when authentication has passed, you need to request a new key.

Press F12 or Ctrl+Shift+I to open the developer panel. The key combinations may differ from the default,
in that case open the developer panel via the browser menu

3. Copy and run the code in the JavaScript console.

This code will make a POST request to the URL {host_name}/api/manage/v1/ApiKeys to create a new access
key valid till 2030.

4. Refresh the browser page and get the result.

{
 "apiKeys": [
 {
 "value": "cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey",
 "description": "Generated by js develop panel",
 "expired": "2030-01-01T07:41:23.399Z"
 }
],
 "count": 1
}

fast-report.com 47 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/user_panel.html

Now you can use the API key. In the example above, cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey
was used.

There is no need to retrieve a new API key through the browser again.

How to use API key
The key should be passed with each request in the Authorization: Basic . You should use apikey as the username
and the key value as the password. For example:

Authorization: Basic Base64Encode(apikey:cc355oeu1z5d5wncayo33me6c1g5junqdqk4pkupid7t8ynjshey);

Where Base64Encode is a function to encode a string into base64.

For FastReport.Cloud.SDK there is a special class that allows you to add a key to the request header
<xref:FastReport.Cloud.FastReportCloudApiKeyHeader>.

To add the necessary header, create a new HttpClient .

HttpClient httpClient = new HttpClient();
httpClient.BaseAddress = new Uri({host_name});
httpClient.DefaultRequestHeaders.Authorization = new FastReportCloudApiKeyHeader(apiKey);

Now this HttpClient can be used for all requests.

Retrieve new API key
To retrieve a new key, call the following method
<xref:FastReport.Cloud.Management.ApiKeysClient.CreateApiKeyAsync(FastReport.Cloud.CreateApiKeyVM)>

CreateApiKeyVM model = new CreateApiKeyVM()
{
 Description = "Created by FastReport.Cloud.SDK",
 Expired = DateTime.UtcNow.AddYears(1)
};

IApiKeysClient apiKeysClient = new ApiKeysClient(httpClient);
await apiKeysClient.CreateApiKeyAsync(model);

Whenever possible, use asynchronous method analogs instead of synchronous methods.

This function will result in a <xref:FastReport.Cloud.ApiKeyVM> model.

What next?
Upload new template.
Work with groups.
Add new users to the workspace.

fast-report.com 48 / 101

Upload new template
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

One of the main features of Service solutions is storing templates, reports, and other data in the cloud. This
article will describe how to upload your own template to service solution template storage.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report template.

It can be generated in the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Instruction
1. You need to get the root folder ID of the workspace. This ID will never change, so you can save it and not

have to request it each time before loading a new template.

To request the root directory, call the method
<xref:FastReport.Cloud.ITemplateFoldersClient.GetRootFolderAsync(System.String,System.Threading.Canc
ellationToken)>.

public async Task<string> GetTemplatesRoot(HttpClient httpClient, string subscriptionId = null)
{
 ITemplateFoldersClient templateFoldersClient = new TemplateFoldersClient(httpClient);

 FileVM result = await templateFoldersClient.GetRootFolderAsync(subscriptionId);

 return result.Id;
}

In this example, the subscriptionId parameter specifies the workspace (subscription) ID, if it is not specified
(equal to null), the default user workspace ID will be returned.

2. To upload the necessary template, use the following method
<xref:FastReport.Cloud.ITemplatesClient.UploadFileAsync(System.String,FastReport.Cloud.TemplateCreate
VM,System.Threading.CancellationToken)>.

fast-report.com 49 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2024.2.0

public async Task<string> UploadFrx(HttpClient httpClient, string folderId, string filePath)
{
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);

 byte[] bytes = File.ReadAllBytes(filePath);

 TemplateCreateVM model = new TemplateCreateVM()
 {
 Name = Path.GetFileName(filePath),
 Content = Convert.ToBase64String(bytes)
 };

 TemplateVM result = await templatesClient.UploadFileAsync(folderId, model);

 return result.Id;
}

In this example, the function retrieves a file from disk and uploads it into the folderId directory. Learn more
about the parameters:

folderId — template directory ID.

model.Name — file name, so it will be displayed inside FastReports Corporate Server.

The file name should have the extension .frx , if it is not there, then add it manually.

model.Content — Base64 encoded file content.

The method returns the identifier of the uploaded template.

Now this template can be used to prepare (create) a report and export it.

What next?
Access rights management by template example.
Create report.

fast-report.com 50 / 101

Access rights management by template example
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

Restricting access to private resources is a very important feature of Service solutions. The flexible access
system allows you to restrict or grant rights to each resource separately, specifying the range of people who
can access it.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report template.

To learn how to upload a report template, see the Upload new template article.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Instruction
1. To view the current rights to the resource, use the following method

<xref:FastReport.Cloud.ITemplatesClient.GetPermissionsAsync(System.String,System.Threading.Cancellati
onToken)>.

public async Task<FilePermission> GetOwnerPermissions(HttpClient httpClient, string templateId)
{
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);

 FilePermissions permissions = await
 templatesClient.GetPermissionsAsync(templateId);

 return permissions.Owner;
}

In this example, the method returns the permissions for the template owner.

Important! Classes <xref:FastReport.Cloud.FilePermissions> and
<xref:FastReport.Cloud.FilePermission> differ by the letter s at the end, the first contains a full
description of access rights to the entity, the second contains only a description for one of the
categories.

fast-report.com 51 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

2. To change the permissions, use the following method
<xref:FastReport.Cloud.ITemplatesClient.UpdatePermissionsAsync(System.String,FastReport.Cloud.Update
FilePermissionsVM,System.Threading.CancellationToken)>.

public async Task<FilePermission> ShareTemplate(HttpClient httpClient, string templateId)
{
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);

 UpdateFilePermissionsVM viewModel = new UpdateFilePermissionsVM()
 {
 NewPermissions = new FilePermissions() {
 Anon = new FilePermission() { Get = FilePermissionGet.Entity | FilePermissionGet.Download }
 },
 Administrate = UpdateFilePermissionsVMAdministrate.Anon
 };

 var result = await templatesClient.AddPermissionAsync(templateId, viewModel);

 return result.Other;
}

In this example, the function allows anonymous users to view information about the template and
download it.

Important! In this example, we pass only the permissions we want to edit and specify them in the
Administrate property.

If you need to change several categories of rights at once, you can list them using the bitwise operator OR
(|).

What next?
Create report.
Work with groups.
Add new users to the workspace.

fast-report.com 52 / 101

Create report
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article describes the process of creating a report from a template using the Service solutions report
processor.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report template.

To learn how to upload a report template, see the Upload new template article.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Instruction
1. You need the template ID to create the template. To get it, use the following method

<xref:FastReport.Cloud.ITemplatesClient.GetFilesListAsync(System.String,System.Nullable{System.Int32},S
ystem.Nullable{System.Int32},System.Threading.CancellationToken)>

public async Task<string> GetTemplateId(HttpClient httpClient)
{
 ITemplateFoldersClient templateFoldersClient =
 new TemplateFoldersClient(httpClient);
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);

 FileVM rootFolder = await templateFoldersClient.GetRootFolderAsync(null);

 IEnumerable<TemplateVM> templates =
 await templatesClient.GetFilesListAsync(rootFolder.Id, 0, 10);

 TemplateVM template = templates.First();

 return template.Id;
}

In this example, the function requests the root directory of the user's default workspace, then requests 10
templates and returns the first one.

fast-report.com 53 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

2. To generate a report, you will need a directory to place the report in. Request the report root directory by
using the following method
<xref:FastReport.Cloud.IReportFoldersClient.GetRootFolderAsync(System.String,System.Threading.Cancella
tionToken)>.

public async Task<string> GetReportsRoot(HttpClient httpClient,
 string subscriptionId = null)
{
 IReportFoldersClient reportFoldersClient = new ReportFoldersClient(httpClient);

 FileVM result = await reportFoldersClient.GetRootFolderAsync(subscriptionId);

 return result.Id;
}

In this example, the function requests the root directory, the workspace ID can be omitted. In this case, the
root directory for the user's default workspace will be returned.

3. To create a report, use the following method
<xref:FastReport.Cloud.ITemplatesClient.PrepareAsync(System.String,FastReport.Cloud.PrepareTemplateT
askVM,System.Threading.CancellationToken)>.

public async Task<string> BuildReport(HttpClient httpClient,
 string folderId,
 string templateId,
 string fileName)
{
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);

 PrepareTemplateVM task = new PrepareTemplateVM()
 {
 Name = Path.ChangeExtension(fileName, ".fpx"),
 FolderId = folderId
 };

 ReportVM result = await templatesClient.PrepareAsync(templateId, task);

 return result.Id;
}

In this example, the function creates a task to create a report.

Important! The report has not been generated yet, but it has already been assigned an identifier. After
some time, the builder's turn will come to this task and the report will be created.

If you do not specify FolderId, the generated report will be saved to the root folder.

4. For information about the report, use the following method
<xref:FastReport.Cloud.IReportsClient.GetFileAsync(System.String,System.Threading.CancellationToken)>.

public async Task<ReportVMStatus> CheckStatus(HttpClient httpClient, string reportId)
{
 IReportsClient reportsClient = new ReportsClient(httpClient);

 ReportVM result = await reportsClient.GetFileAsync(reportId);

 return result.Status.GetValueOrDefault();
}

In this example, the function requests a report by its ID and returns the status. You must wait for the
<xref:FastReport.Cloud.FileStatus.Success> status, check it every few seconds.

fast-report.com 54 / 101

5. Check the status in the loop and download the file.

 int tries = 10;
 FileStatus status;
 do
 {
 status = await CheckStatus(httpClient, reportId);
 tries--;
 } while (status != FileStatus.Success && tries > 0);

 var report = await DownloadReport(httpClient, reportId);

6. To download the report, use the following method
<xref:FastReport.Cloud.IDownloadClient.GetReportAsync(System.String,System.Threading.CancellationTok
en)>.

public async Task<byte[]> DownloadReport(HttpClient httpClient, string reportId)
{
 IDownloadClient downloadClient = new DownloadClient(httpClient);

 FileResponse file = await downloadClient.GetReportAsync(reportId);

 using(MemoryStream ms = new MemoryStream())
 {
 file.Stream.CopyTo(ms);

 return ms.ToArray();
 }
}

In this example, the function requests a file and copies it to memory.

What next?
Export report to PDF.

fast-report.com 55 / 101

Report parameters
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of passing parameters to a report, which are a dictionary of parameters
provided when generating a report. More information on this can be found in the FastReport .NET guide in the
Report parameters section.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report template.

It can be generated in the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Pass parameters to the report
Parameters can be passed when:

preparing a report;
exporting from a template;
working with tasks.

Let’s consider parameter passing by example of report generation. Detailed instructions on how to create a
report can be found in the Create report section.

fast-report.com 56 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://www.fast-report.com/public_download/docs/FRNet/online/en/UserManual/en-US/Data/ReportParameters.html
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2020.4.0

 public async Task PassingReportParameters(HttpClient httpClient,
 string folderId,
 string templateId,
 string fileName)
 {
 ITemplatesClient templatesClient = new TemplatesClient(httpClient);
 PrepareTemplateVM task = new PrepareTemplateVM()
 {
 Name = Path.ChangeExtension(fileName, ".fpx"),
 FolderId = folderId,
 ReportParameters = new Dictionary<string, string>
 {
 { "Parameter1", "Value1" },
 { "Parameter2", "Value2" }
 }
 };

 // Add new parameter to dictionary
 task.ReportParameters.Add("Parameter3", "Value3");

 ReportVM result = await templatesClient.PrepareAsync(templateId, task);}

fast-report.com 57 / 101

Export report to PDF
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of exporting a report using the Service solutions report processor.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report.

You can learn how to create a report in the Create report article.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Annotation
You can export a report directly from the template, without intermediate saving of the report. To do this run the
same commands for the report template, replacing Report in methods with Template use the template ID, not
the report ID.

Instruction
1. You will need a report ID to export to PDF. To retrieve it, use the following method

<xref:FastReport.Cloud.ITemplatesClient.GetFilesListAsync(System.String,System.Nullable{System.Int32},S
ystem.Nullable{System.Int32},System.Threading.CancellationToken)>.

fast-report.com 58 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

public async Task<string> GetReportId(HttpClient httpClient)
{
 IReportFoldersClient reportFoldersClient = new ReportFoldersClient(httpClient);
 IReportsClient reportsClient = new ReportsClient(httpClient);

 FileVM rootFolder = await reportFoldersClient.GetRootFolderAsync(null);

 IEnumerable<ReportVM> reports =
 await reportsClient.GetFilesListAsync(rootFolder.Id, 0, 10);

 ReportVM report = reports.First();

 return report.Id;
}

In this example, the function requests the root directory of the user's default workspace, then requests 10
reports and returns the first one.

2. To export the report, you will need a directory to save the export to.

Retrieve the root directory of exports by using the method
<xref:FastReport.Cloud.IExportFoldersClient.GetRootFolderAsync(System.String,System.Threading.Cancella
tionToken)>.

public async Task<string> GetExportsRoot(HttpClient httpClient,
 string subscriptionId = null)
{
 IExportFoldersClient exportFoldersClient = new ExportFoldersClient(httpClient);

 FileVM result = await exportFoldersClient.GetRootFolderAsync(subscriptionId);

 return result.Id;
}

In this example, the function requests the root directory, the workspace ID can be omitted. In this case, the
root directory for the user's default workspace will be returned.

3. To export the report, use the following method
<xref:FastReport.Cloud.IReportsClient.ExportAsync(System.String,FastReport.Cloud.ExportReportTaskVM,S
ystem.Threading.CancellationToken)>.

fast-report.com 59 / 101

public async Task<string> ExportReport(HttpClient httpClient,
 string folderId,
 string reportId,
 string fileName)
{
 IReportsClient reportsClient = new ReportsClient(httpClient);

 ExportReportVM task = new ExportReportVM()
 {
 FileName = Path.ChangeExtension(fileName, ".pdf"),
 FolderId = folderId,
 Format = ExportReportTaskVMFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "additionalProp1", ""},
 { "additionalProp2", ""},
 { "additionalProp3", ""}
 }
 };

 ExportVM result = await reportsClient.ExportAsync(reportId, task);

 return result.Id;
}

FileName — name of the resulting file. If you do not specify the extension, or specify it incorrectly, the
server will replace it by itself.
FolderId — ID of the directory where the export will be placed. If left blank, the export will be placed in
the root folder for exports in the workspace.
Format — export format.
ExportParameters — export parameters. They are set similarly to the export parameters from the
FastReport .NET library. A more detailed description is stored in the user documentation in the export
parameters section.

In this example, the function creates a task to export a report.

Important! The report has not been exported yet, but an ID has already been assigned to the export. After
some time, the builder's turn will come to this task and the report will be exported.

If you do not specify FolderId, the export will be saved to the root folder.

4. For information about the file, use the following method
<xref:FastReport.Cloud.IExportsClient.GetFileAsync(System.String,System.Threading.CancellationToken)>.

public async Task<ExportVMStatus> CheckStatus(HttpClient httpClient, string exportId)
{
 IExportsClient exportsClient = new ExportsClient(httpClient);

 ExportVM result = await exportsClient.GetFileAsync(exportId);

 return result.Status.GetValueOrDefault();
}

In this example, the function requests an export by its ID and returns the status. You must wait for the
<xref:FastReport.Cloud.FileStatus.Success> status. Check it every few seconds.

5. Check the status in the loop and download the export.

fast-report.com 60 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/fastreport_cloud_description/exports/export_parameters.md

int tries = 10;
FileStatus status;
do
{
status = await CheckStatus(httpClient, reportId);
 tries--;
} while (status != FileStatus.Success && tries > 0);
var report = await DownloadExport(httpClient, reportId);

6. Use the following method to download the report
<xref:FastReport.Cloud.IDownloadClient.GetExportAsync(System.String,System.Threading.CancellationToke
n)>.

public async Task<byte[]> DownloadExport(HttpClient httpClient, string exportId)
{
 IDownloadClient downloadClient = new DownloadClient(httpClient);

 FileResponse file = await downloadClient.GetExportAsync(exportId);

 using (MemoryStream ms = new MemoryStream())
 {
 file.Stream.CopyTo(ms);

 return ms.ToArray();
 }
}

In this example, the function requests a file and copies it to memory.

What next?
Work with groups.
Add new users to the workspace.

fast-report.com 61 / 101

Add new users to the workspace
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of adding a new user to a subscription, retrieving the list of users, and removing
a user from it.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher. The subscription must have at least two user slots.

5. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Annotation
Important! It is only possible to add a user to a workspace by user ID.

Instruction
1. To add a new user to a workspace, a workspace (subscription) ID is required.

To retrieve the workspace ID, use the following method
<xref:FastReport.Cloud.ISubscriptionsClient.GetSubscriptionsAsync(System.Nullable{System.Int32},System.
Nullable{System.Int32},System.Threading.CancellationToken)>.

public async Task<string> GetSubscriptionId(HttpClient httpClient)
{
 ISubscriptionsClient subscriptionsClient = new SubscriptionsClient(httpClient);
 SubscriptionsVM subscriptions =
 await subscriptionsClient.GetSubscriptionsAsync(0, 10);
 SubscriptionVM subscription = subscriptions.Subscriptions.First();
 return subscription.Id;
}

In this example, the function requests the first 10 workspaces (subscriptions) from the user's list of
workspaces, selects the first workspace, and returns its ID.

A workspace always is associated with the one subscription, so they have the same ID.

2. To add a new user, use the following method
fast-report.com 62 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

<xref:FastReport.Cloud.ISubscriptionUsersClient.AddUserAsync(System.String,System.String,System.Thread
ing.CancellationToken)>.

public async Task AddUser(HttpClient httpClient, string subscriptionId, string userId)
{
 ISubscriptionUsersClient subscriptionUsersClient =
 new SubscriptionUsersClient(httpClient);
 await subscriptionUsersClient.AddUserAsync(subscriptionId, userId);
}

In this example, the function adds the user with the userId ID to the workspace with the subscriptionId ID.

3. To retrieve the list of workspace users, use the following method
<xref:FastReport.Cloud.ISubscriptionUsersClient.GetUsersAsync(System.String,System.Nullable{System.Int
32},System.Nullable{System.Int32},System.Threading.CancellationToken)>.

public async Task<IEnumerable<string>> GetUsers(HttpClient httpClient, string subscriptionId)
{
 ISubscriptionUsersClient subscriptionUsersClient =
 new SubscriptionUsersClient(httpClient);
 SubscriptionUsersVM users =
 await subscriptionUsersClient.GetUsersAsync(subscriptionId, 0, 10);
 return users.Users.Select(m => m.UserId);
}

In this example, the function requests the first 10 users from a workspace with the subscriptionId ID.

4. To remove a user from the workspace, use the following method
<xref:FastReport.Cloud.ISubscriptionUsersClient.RemoveUserAsync(System.String,System.String,System.Th
reading.CancellationToken)>.

public async Task RemoveUser(HttpClient httpClient, string subscriptionId, string userId)
{
 ISubscriptionUsersClient subscriptionUsersClient =
 new SubscriptionUsersClient(httpClient);
 await subscriptionUsersClient.RemoveUserAsync(subscriptionId, userId);
}

In this method, the function removes the user with the userId ID from the workspace with the subscriptionId
ID.

What next?
Work with groups
Help and feedback

fast-report.com 63 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/help.html

Work with groups
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This article covers the process of creating a new group, adding a user to the group, and getting a list of the
group's users.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher. The subscription must have at least two user slots.

5. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

Annotation
Important! Adding a user to a group is only possible if the user exists in the workspace.

Important! It is possible to add a user to a group only by their ID.

Instruction
1. To create a new group, you need a workspace ID and the name of the new group.

To retrieve the workspace ID, use the following method
<xref:FastReport.Cloud.ISubscriptionsClient.GetSubscriptionsAsync(System.Nullable{System.Int32},System.
Nullable{System.Int32},System.Threading.CancellationToken)>.

public async Task<string> GetSubscriptionId(HttpClient httpClient)
{
 ISubscriptionsClient subscriptionsClient = new SubscriptionsClient(httpClient);

 SubscriptionsVM subscriptions =
 await subscriptionsClient.GetSubscriptionsAsync(0, 10);

 SubscriptionVM subscription = subscriptions.Subscriptions.First();

 return subscription.Id;
}

In this example, the function requests the first 10 workspaces from the user's list of workspaces, selects
the first workspace, and returns its ID.

fast-report.com 64 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

The ID of a workspace and a subscription are the same because one subscription is associated with
each workspace.

2. To create a new group, use the following method
<xref:FastReport.Cloud.IGroupsClient.CreateGroupAsync(FastReport.Cloud.CreateGroupVM,System.Threadi
ng.CancellationToken)>.

public async Task<string> CreateGroup(HttpClient httpClient,
 string subscriptionId,
 string groupName)
{
 IGroupsClient groupsClient = new GroupsClient(httpClient);

 CreateGroupVM viewModel = new CreateGroupVM()
 {
 Name = groupName,
 SubscriptionId = subscriptionId
 };

 GroupVM group = await groupsClient.CreateGroupAsync(viewModel);

 return group.Id;
}

In this example, the function creates a new group with the groupName name for the workspace with the
subscriptionId ID, as a result the function will return the ID of the created group.

3. To add a new user to the group, use the following method
<xref:FastReport.Cloud.IGroupUsersClient.AddUserToGroupAsync(System.String,System.String,System.Thr
eading.CancellationToken)>.

public async Task AddUser(HttpClient httpClient, string groupId, string userId)
{
 IGroupUsersClient groupUsersClient = new GroupUsersClient(httpClient);

 await groupUsersClient.AddUserToGroupAsync(groupId, userId);
}

In this example, the function adds a user with the userId ID to the group with groupId ID.

4. To retrieve the list of users in the group, use the following method
<xref:FastReport.Cloud.IGroupUsersClient.GetUsersInGroupAsync(System.String,System.Nullable{System.I
nt32},System.Nullable{System.Int32},System.Threading.CancellationToken)>.

public async Task<IEnumerable<string>> GetUsers(HttpClient httpClient, string groupId)
{
 IGroupUsersClient groupUsersClient = new GroupUsersClient(httpClient);

 GroupUsersVM users =
 await groupUsersClient.GetUsersInGroupAsync(groupId, 0, 10);

 return users.Users.Select(m => m.UserId);
}

In this example, the function requests the first 10 users from the group with the groupId .

What next?
Help and feedback

fast-report.com 65 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/help.html

Work with tasks
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

Tasks in Service solutions are actions to convert and deliver documents to consumers. They are described in
detail in the Tasks section.

Getting started
You will need the following tools and facilities:

1. Know how to use API key in Service solutions.

This article will skip over additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, e.g., Visual Studio Code.

4. Report template.

It can be created in the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Important! These guides assume that you already know how to develop your application in the C#
programming language.

Note. The items above describe recommended tools.

fast-report.com 66 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/user/fastreport_service_description/tasks_info.html
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2024.2.0

General Information
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article we will cover task types and how to work with them.

Getting Started
You will need the following tools and capabilities:

1. Know how to use API key in Service solutions.

This article will skip additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, such as Visual Studio Code.

4. Report template.

It can be prepared using the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

Note! This guide assumes that you already know how to develop your application in the C# programming
language.

Note! The points above describe the recommended tools.

First, you need to create an HttpClient that we will use later:

 var httpClient = new HttpClient();
 httpClient.BaseAddress = new Uri("https://fastreport.cloud");
 httpClient.DefaultRequestHeaders.Authorization = new FastReportCloudApiKeyHeader(ApiKey);

Next, let's get the subscription that we will work with tasks:

var subscriptions = new SubscriptionsClient(httpClient);
var subscription = (await subscriptions.GetSubscriptionsAsync(0, 10)).Subscriptions.FirstOrDefault();

Now we need to create a client for working with tasks:

TasksClient tasksClient = new TasksClient(httpClient);

Now you can proceed directly to working with tasks.

fast-report.com 67 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2025.2.0

Stored Tasks
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

As mentioned in the previous section, Service solutions has the ability to create tasks that are stored in the
database and can be run later. These tasks are called stored tasks.

Let's take a closer look at how to create, update, and run stored tasks using the C# SDK.

About ViewModels and Types
When working, you will pass different ViewModels (View Models) to SDK methods. Let's consider which view
models can be used.

View Models for Creating Tasks

View Models for creating transformer tasks:

CreatePrepareTaskVM
CreateExportTemplateTaskVM
CreateExportReportTaskVM

View Models for creating transport tasks:

CreateEmailTaskVM
CreateWebhookTaskVM
CreateFTPUploadTaskVM
CreateS3UploadTaskVM

View Models for creating other tasks:

CreateFetchTaskVM

View Models for Updating Properties of Saved Tasks

View Models for updating transformer tasks:

UpdatePrepareTaskVM
UpdateExportTemplateTaskVM
UpdateExportReportTaskVM

View Models for updating transport tasks:

UpdateEmailTaskVM
UpdateWebhookTaskVM
UpdateFTPUploadTaskVM
UpdateS3UploadTaskVM

View Models for updating other tasks:

UpdateFetchTaskVM

View Model for Updating Task Permissions:
UpdateTaskPermissionsVM

Creating a Task

fast-report.com 68 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

To create tasks, you should use the CreateTask or CreateTaskAsync method. It can accept any class that
inherits from TaskBaseVM:

CreatePrepareTaskVM
CreateExportTemplateTaskVM
CreateExportReportTaskVM
CreateFetchTaskVM
CreateEmailTaskVM
CreateWebhookTaskVM
CreateFTPUploadTaskVM
CreateS3UploadTaskVM.

Let's consider creating a report preparation task, saving it to a folder and subsequent export to PDF with
saving to a folder:

 await tasksClient.CreateTaskAsync(new CreatePrepareTaskVM
 {
 Name = "My First Task",
 Type = TaskType.Prepare,
 InputFile = new InputFileVM
 {
 EntityId = "{templateId}"
 },
 OutputFile = new OutputFileVM
 {
 FileName = "My First Report Generated by Task.fpx",
 FolderId = "{report folder identifier}"
 },
 Exports = new List<CreateExportReportTaskVM>
 {
 new CreateExportReportTaskVM
 {
 Format = ExportFormat.Pdf,
 OutputFile = new OutputFileVM
 {
 FileName = "pdfFromFpxFromFrx.pdf",
 FolderId = "{export folder identifier}"
 }
 }
 }
 });

Real object identifiers should be entered in the EntityId and FolderId fields. Otherwise, the task will be aborted
with an error.

Note! If you don't specify OutputFile, it will be saved to a temporary folder. If you specify an empty
OutputFile - to the root folder. If you specify a folder id - to it.

Next, let's consider creating a report export task with subsequent email sending:

fast-report.com 69 / 101

var currentTask = await tasksClient.CreateTaskAsync(new CreateExportTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" },
 { "param3", "val3" }
 },
 Format = ExportFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "PrintOptimized", "true" },
 { "JpegQuality", "90" }
 },
 Transports = new List<CreateTransportTaskBaseVM>
 {
 new CreateEmailTaskVM
 {
 Name = "Email Distribution Task",
 From = "admin@company.com",
 To = new List<string> { "user@company.com","seller@company.com" },
 Subject = "Important Report",
 IsBodyHtml = false,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Body = "An important report is attached to this email.",
 Port= 587,
 EnableSsl = true
 }
 }
});

Real object identifiers should be entered in the EntityId and FolderId fields. Otherwise, the task will be aborted
with an error.

Note! If you don't specify OutputFile, it will be saved to a temporary folder. If you specify an empty
OutputFile - to the root folder. If you specify a folder id - to it.

Running Tasks on Schedule
To configure scheduled task execution, you need to specify the following fields:

CronExpression
StartsOn
Ends

CronExpression - a string containing a cron expression that defines the task execution schedule.

StartsOn - the date and time from which the scheduled task execution begins (in user's timezone).

Ends - an object containing the date and time until which the task will be executed (On) or the number of
repetitions (After). The On field is specified in user's timezone. If neither the After nor the On field is specified,
the task will run indefinitely.

fast-report.com 70 / 101

Example of creating a scheduled task:

 var currentTask = await tasksClient.CreateTaskAsync(new CreateExportTemplateTaskVM
 {
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 Format = ExportFormat.Pdf,
 CronExpression = "*/5 * * * *",
 StartsOn = DateTime.Now.AddMinutes(1),
 Ends = new CreateTaskEndVM
 {
 On = DateTime.Now.AddDays(1)
 }
 });

In this example, the task will run every 5 minutes, starting from the task creation date and will finish execution
after one day.

To make the task execute, for example, 10 times, you need to replace the On field with the After field:

CronExpression = "*/5 * * * *",
 StartsOn = DateTime.UtcNow,
 Ends = new CreateTaskEndVM
 {
 After = 10
 }

Getting Task List
 // Get the first 100 tasks from the workspace
 var tasks = await tasksClient.GetListAsync(0, 100, subscription.Id);

Editing a Task
After a task is created, you can change some of its parameters.

// Task editing
var editedTask = await tasksClient.UpdateTaskAsync(currentTaskId, new UpdateExportTemplateTaskVM
{
 Format = ExportFormat.Docx,
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" }
 },
 TransportIds = new List<string> { "{transportId}" }
});

Note that when updating a task, you need to specify TransportIds - a list of transport task identifiers (Email,
FTP, Webhook, S3), not the tasks themselves. The task itself can be created in advance either separately or
when creating a transformer task. For more details on their creation, read the section Creating Transport
Tasks.

Executing a Task by Specified Identifier

fast-report.com 71 / 101

file:///home/gitlab-runner/builds/tgQaVt2Wt/0/cloud/fastreport.cloud/docs/_output/_site_pdf/_raw/_site_pdf/user/en-US/programmer/guides/c_sharp/transports/rest_transport.md

 // Run task by identifier
 await tasksClient.RunTaskByIdAsync(id);

Deleting Tasks from Storage
// Delete all tasks
foreach(var t in tasks.Tasks)
{
 await tasksClient.DeleteTaskAsync(t.Id);
}

fast-report.com 72 / 101

Tasks Executed from Request Body
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

As mentioned in the previous section, Service solutions has the ability to run tasks without prior saving. To do
this, you should use the RunTask method, passing a model inherited from UpdateTaskBaseVM into it.

For example, to build a PDF document and send it via FTP, you need to pass data such as template identifier (
EntityId) or the template itself (Content) to the InputFile object in the RunTask method, as well as data for
connecting to the FTP server.

Let's take a closer look at how to work with such tasks using the C# SDK.

About ViewModels and Types
When working, you will pass different ViewModels (View Models) to SDK methods. Let's consider which view
models can be used.

View Models for Running Tasks On-the-Fly (Without Saving)

View Models for running transformer tasks on-the-fly:

RunPrepareTaskVM
RunExportTemplateTaskVM
RunExportReportTaskVM

View Models for running transport tasks on-the-fly:

RunEmailTaskVM
RunWebhookTaskVM
RunFTPUploadTaskVM
RunS3UploadTaskVM

View Models for running other tasks on-the-fly:

RunFetchTaskVM

Running Task On-the-Fly (from Request Body)
Let's consider running a report export task with subsequent email sending:

fast-report.com 73 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

var runTask = await tasksClient.RunTaskAsync(new RunExportTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 InputFile = new RunInputFileVM
 {
 EntityId = template.Id,
 FileName = "Document"
 //Content = new byte[] { }
 },
 Format = ExportFormat.Docx,
 Transports = new List<RunTransportTaskBaseVM>
 {
 new RunEmailTaskVM
 {
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "password123",
 Server = "smtp.company.com",
 Port = 587
 }
 }
});

Real object identifiers should be entered in the EntityId field. Otherwise, the task will be aborted with an error.

Also, instead of it, you can pass the template content in the Content field as a byte array in the InputFile object.

fast-report.com 74 / 101

Export Template Task
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider working with the template export task (ExportTemplateTask). General
instructions on how to work with tasks are described in the General Information section.

It should be noted that you can export a template not only using the task system, but also directly through a
request to the templates controller. The advantage of using the task system is that it allows not only saving
the document to a folder, but also transferring it to external systems (via Email, FTP, S3, Webhook).

Creating a Task
Let's consider creating a template export task to PDF:

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreateExportTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" },
 { "param3", "val3" }
 },
 Format = ExportFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "PrintOptimized", "true" },
 { "JpegQuality", "90" }
 },
 OutputFile = new OutputFileVM
 {
 FileName = "Report"
 }
});

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Since no folder for saving is specified in OutputFile, when the task runs, the document will be saved to the root
folder.

Let's specify a different folder for saving:

 "OutputFile" : {
 "FolderId": "61cb2226d24478b172103075",
 "FileName": "Report"
 }

Running Task by Identifier
Now when the task runs, the PDF file will be saved to the specified folder.

fast-report.com 75 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

await tasksClient.RunTaskByIdAsync(currentTask.Id);

Sending Document After Export
To send the document after export, you can use the Email, FTP, S3, or Webhook sending task.

Let's consider an example of creating a PDF export task with subsequent sending of the finished document via
Email.

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreateExportTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" },
 { "param3", "val3" }
 },
 Format = ExportFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "PrintOptimized", "true" },
 { "JpegQuality", "90" }
 },
 Transports = new List<CreateTransportTaskBaseVM>
 {
 new CreateEmailTaskVM
 {
 Name = "Email Distribution Task",
 From = "admin@company.com",
 To = new List<string> { "user@company.com","seller@company.com" },
 Subject = "Important Report",
 IsBodyHtml = false,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Body = "An important report is attached to this email.",
 Port= 587,
 EnableSsl = true
 }
 }
});

Editing a Task
After a task is created, you can change some of its parameters.

fast-report.com 76 / 101

// Task editing
var editedTask = await tasksClient.UpdateTaskAsync(currentTask.Id, new UpdateExportTemplateTaskVM
{
 Format = ExportFormat.Docx,
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" }
 },
 TransportIds = new List<string> { "{transportId}" }
});

Note that when updating a task, you need to specify TransportIds - a list of transport task identifiers (Email,
FTP, Webhook, S3), not the tasks themselves. The task itself can be created in advance either separately or
when creating a transformer task. For more details on their creation, read the section Creating Transport
Tasks.

Executing Task from Request Body
var runTask = await tasksClient.RunTaskAsync(new RunExportTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 InputFile = new RunInputFileVM
 {
 EntityId = template.Id,
 FileName = "Document"
 //Content = new byte[] { }
 },
 Format = ExportFormat.Docx,
 Transports = new List<RunTransportTaskBaseVM>
 {
 new RunEmailTaskVM
 {
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Port = 587
 }
 }
});

Thus, as a result of executing this request, a PDF document will be created and sent via email.

Note! In this case, the creation of the PDF document and its sending via email will be performed directly by
this request and the task will not be saved in the database.

fast-report.com 77 / 101

Export Report Task
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider working with the report export task (ExportReportTask). General instructions on
how to work with tasks are described in the General Information section.

It should be noted that you can export a template not only using the task system, but also directly through a
request to the reports controller. The advantage of using the task system is that it allows not only saving the
document to a folder, but also transferring it to external systems (via Email, FTP, S3, Webhook).

Creating a Task
Let's consider creating a report export task to PDF:

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreateExportReportTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 Format = ExportFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "PrintOptimized", "true" },
 { "JpegQuality", "90" }
 },
 OutputFile = new OutputFileVM
 {
 FileName = "Report"
 }
});

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Since no folder for saving is specified in OutputFile, when the task runs, the document will be saved to the root
folder.

Let's specify a different folder for saving:

 "OutputFile" : {
 "FolderId": "61cb2226d24478b172103075",
 "FileName": "Report"
 }

Running Task by Identifier
Now when the task runs, the PDF file will be saved to the specified folder.

await tasksClient.RunTaskByIdAsync(currentTask.Id);

Sending Document After Export

fast-report.com 78 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

To send the document after export, you can use the Email, FTP, S3, or Webhook sending task.

Let's consider an example of creating a PDF export task with subsequent sending of the finished document via
Email.

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreateExportReportTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "PDF Email Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 Format = ExportFormat.Pdf,
 ExportParameters = new Dictionary<string, string>
 {
 { "PrintOptimized", "true" },
 { "JpegQuality", "90" }
 },
 Transports = new List<CreateTransportTaskBaseVM>
 {
 new CreateEmailTaskVM
 {
 Name = "Email Distribution Task",
 From = "admin@company.com",
 To = new List<string> { "user@company.com","seller@company.com" },
 Subject = "Important Report",
 IsBodyHtml = false,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Body = "An important report is attached to this email.",
 Port= 587,
 EnableSsl = true
 }
 }
});

Editing a Task
After a task is created, you can change some of its parameters.

// Task editing
var editedTask = await tasksClient.UpdateTaskAsync(currentTask.Id, new UpdateExportReportTaskVM
{
 Format = ExportFormat.Docx,
 TransportIds = new List<string> { "{transportId}" }
});

Note that when updating a task, you need to specify TransportIds - a list of transport task identifiers (Email,
FTP, Webhook, S3), not the tasks themselves. The task itself can be created in advance either separately or
when creating a transformer task. For more details on their creation, read the section Creating Transport
Tasks.

Executing Task from Request Body

fast-report.com 79 / 101

var runTask = await tasksClient.RunTaskAsync(new RunExportReportTaskVM
{
 SubscriptionId = subscriptionId,
 InputFile = new RunInputFileVM
 {
 EntityId = template.Id,
 FileName = "Document"
 //Content = new byte[] { }
 },
 Format = ExportFormat.Docx,
 Transports = new List<RunTransportTaskBaseVM>
 {
 new RunEmailTaskVM
 {
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Port = 587
 }
 }
});

Thus, as a result of executing this request, a PDF document will be created and sent via email.

Note! In this case, the creation of the PDF document and its sending via email will be performed directly by
this request and the task will not be saved in the database.

fast-report.com 80 / 101

Prepare Report Task
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider working with the report preparation task (PrepareTemplateTask). General
instructions on how to work with tasks are described in the General Information section.

It should be noted that you can prepare a report not only using the task system, but also directly through a
request to the templates controller. The advantage of using the task system is that it allows not only saving
the document to a folder, but also transferring it to external systems (via Email, FTP, S3, Webhook).

Creating a Task
Let's consider creating a report preparation task:

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreatePrepareTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "Report Preparation Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 OutputFile = new OutputFileVM
 {
 FileName = "Report.fpx"
 }
});

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Since no folder for saving is specified in OutputFile, when the task runs, the document will be saved to the root
folder.

Let's specify a different folder for saving:

 "OutputFile" : {
 "FolderId": "61cb2226d24478b172103075",
 "FileName": "Report"
 }

Running Task by Identifier
Now when the task runs, the PDF file will be saved to the specified folder.

await tasksClient.RunTaskByIdAsync(currentTask.Id);

Exporting Report After Preparation
To export the report after preparation, you can use the export task.

Let's consider an example of creating a report preparation task with subsequent export to PDF.

fast-report.com 81 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

// Creating a task
var currentTask = await tasksClient.CreateTaskAsync(new CreatePrepareTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 Name = "Report Preparation Task",
 InputFile = new InputFileVM
 {
 EntityId = template.Id
 },
 OutputFile = new OutputFileVM
 {
 FileName = "Report.fpx"
 },
 Exports = new List<CreateExportReportTaskVM>()
 {
 new CreateExportReportTaskVM
 {
 SubscriptionId = subscriptionId,
 Name = "PDF Export Task",
 Format = ExportFormat.Pdf,
 OutputFile = new OutputFileVM
 {
 FileName = "Document.pdf"
 }
 }
 }
});

Editing a Task
After a task is created, you can change some of its parameters.

// Task editing
var editedTask = await tasksClient.UpdateTaskAsync(currentTask.Id, new UpdatePrepareTemplateTaskVM
{
 ReportParameters = new Dictionary<string, string>
 {
 { "param1", "val1" },
 { "param2", "val2" }
 },
 TransportIds = new List<string> { "{transportId}" }
});

Note that when updating a task, you need to specify TransportIds - a list of transport task identifiers (Email,
FTP, Webhook, S3), not the tasks themselves. The task itself can be created in advance either separately or
when creating a transformer task. For more details on their creation, read the section Creating Transport
Tasks.

Executing Task from Request Body

fast-report.com 82 / 101

var runTask = await tasksClient.RunTaskAsync(new RunPrepareTemplateTaskVM
{
 SubscriptionId = subscriptionId,
 InputFile = new RunInputFileVM
 {
 EntityId = template.Id,
 FileName = "Document"
 //Content = new byte[] { }
 },
 Transports = new List<RunTransportTaskBaseVM>
 {
 new RunEmailTaskVM
 {
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Port = 587
 }
 }
});

Thus, as a result of executing this request, a report will be prepared and sent via email.

Note! In this case, the creation of the report and its sending via email will be performed directly by this
request and the task will not be saved in the database.

fast-report.com 83 / 101

Sending via Email
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider the method of sending a report via email. Instructions on how to work with tasks
are described in the General Information section.

Getting Started
You will need the following tools and capabilities:

1. Knowledge of using API key in Service solutions.

This article will skip additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, such as Visual Studio Code.

4. Report template.

It can be prepared using the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

7. Configured and accessible mail server.

Note! This guide assumes that you already know how to develop your application in the C# programming
language.

Note! The points above describe the recommended tools.

Note! This guide assumes that you have experience configuring mail server connections.

Creating a Task
Let's consider creating an email template sending task:

fast-report.com 84 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2025.2.0

// Object initialization
CreateEmailTaskVM emailTaskVM = new CreateEmailTaskVM
{
 Name = "Email Sending Task",
 SubscriptionId = "{workspace identifier}",
 InputFile = new InputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Port = 587
};

 // Creating a task
 TaskBaseVM emailTask = await tasksClient.CreateTaskAsync(emailTaskVM);

 // Run task by identifier
 await tasksClient.RunTaskByIdAsync(emailTask.Id);

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Executing Task from Request Body
RunEmailTaskVM emailTaskVM = new RunEmailTaskVM
{
 SubscriptionId = "{workspace identifier}",
 InputFile = new RunInputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 From = "admin@company.com",
 To = ["user@company.com", "seller@company.com"],
 Subject = "Important Report",
 Body = "An important report is attached to this email.",
 EnableSsl = true,
 Username = "admin@company.com",
 Password = "parol123",
 Server = "smtp.company.com",
 Port = 587
};

// Task execution
TaskMessageIdVM emailTask = await tasksClient.RunTaskAsync(emailTaskVM);

Note! In this case, the file sending via email will be performed directly by this request and the task will not
be saved in the database. Also, you can pass reports and ready documents in various formats in the
content field, for example, PDF, XLSX, etc.

Note! The message identifier will be returned in emailTask.

fast-report.com 85 / 101

Saving to FTP Server
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider the method of sending a report to an FTP server. Instructions on how to work
with tasks are described in the General Information section.

Getting Started
You will need the following tools and capabilities:

1. Knowledge of using API key in Service solutions.

This article will skip additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, such as Visual Studio Code.

4. Report template.

It can be prepared using the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

7. Configured and accessible FTP server.

Note! This guide assumes that you already know how to develop your application in the C# programming
language.

Note! The points above describe the recommended tools.

Note! This guide assumes that you have experience configuring and setting up an FTP server to accept files
from external sources.

Creating a Task
Let's consider creating a template sending task to FTP server:

fast-report.com 86 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2025.2.0

// Object initialization
 CreateFTPUploadTaskVM ftpUploadTaskVM = new CreateFTPUploadTaskVM
 {
 Name = "FTP Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 FtpHost = "{FTP server address}",
 FtpPort = 21,
 FtpUsername = "{FTP server username}",
 FtpPassword = "{password}",
 UseSFTP = false,
 DestinationFolder = "{/path_to_folder/}",
 Archive = false,
 ArchiveName = "Archive Name",
 SubscriptionId = "{workspace identifier}"
 };

 // Creating a task
 TaskBaseVM ftpUploadTask = await tasksClient.CreateTaskAsync(ftpUploadTaskVM);

 // Run task by identifier
 await tasksClient.RunTaskByIdAsync(ftpUploadTask.Id);

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Executing Task from Request Body
// Run task from request body
 await tasksClient.RunTaskAsync(new RunFTPUploadTaskVM
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 FtpHost = "{FTP server address}",
 FtpPort = 21,
 FtpUsername = "{FTP server username}",
 FtpPassword = "{password}",
 UseSFTP = false,
 DestinationFolder = "{/path_to_folder/}",
 Archive = false,
 ArchiveName = "Archived Template",
 SubscriptionId = "{workspace identifier}"
 });

Note! In this case, the FTP sending will be performed directly by this request and the task will not be saved
in the database.

Updating Task by Identifier

fast-report.com 87 / 101

 await tasksClient.UpdateTaskAsync("{old task identifier}", new UpdateFTPUploadTaskVM()
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{updated template identifier}",
 Type = FileKind.Template
 },
 FtpHost = "{Updated FTP server address}",
 FtpPort = 21,
 FtpUsername = "{updated FTP server username}",
 FtpPassword = "{updated password}",
 UseSFTP = false,
 DestinationFolder = "/updated_path_to_folder",
 Archive = false,
 ArchiveName = "Updated Archive Name"
 });

fast-report.com 88 / 101

Saving via Webhook
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider the method of sending a report via webhook. Instructions on how to work with
tasks are described in the General Information section.

Getting Started
You will need the following tools and capabilities:

1. Knowledge of using API key in Service solutions.

This article will skip additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, such as Visual Studio Code.

4. Report template.

It can be prepared using the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

7. Client application that accepts requests.

Note! This guide assumes that you already know how to develop your application in the C# programming
language.

Note! The points above describe the recommended tools.

Note! This guide assumes that you have a client application that accepts and processes incoming
webhooks.

Creating a Task
Let's consider creating a template sending task via webhook and its subsequent execution:

fast-report.com 89 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2025.2.0

// Object initialization
CreateWebhookTaskVM webhookTaskVM = new CreateWebhookTaskVM
{
 Name = "Webhook Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 Url = new Uri("https://example.com/"),
 Headers = new Dictionary<string, string> {
 { "Authorization", "Bearer <token>" },
 { "Content-Length", "1238" }
 },
 SubscriptionId = "{workspace identifier}"
};

 // Creating a task
 TaskBaseVM webhookTask = await tasksClient.CreateTaskAsync(webhookTaskVM);

 // Run task by identifier
 await tasksClient.RunTaskByIdAsync(webhookTask.Id);

Note! Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task
will be aborted with an error.

Note! EntityId can be passed template, report, and export identifier.

Executing Task from Request Body
// Run task from request body
 await tasksClient.RunTaskAsync(new RunWebhookTaskVM
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 Url = new Uri("https://example.com/"),
 Headers = new Dictionary<string, string> {
 { "Authorization", "Bearer <token>" },
 { "Content-Type", "multipart/form-data" }
 },
 SubscriptionId = "{workspace identifier}"
 });

Note! In this case, the webhook sending will be performed directly by this request and the task will not be
saved in the database.

Updating Task by Identifier

fast-report.com 90 / 101

await tasksClient.UpdateTaskAsync("{old task identifier}", new UpdateWebhookTaskVM()
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{updated template identifier}",
 Type = FileKind.Template
 },
 Url = new Uri("{Updated address}"),
 Headers = new Dictionary<string, string> {
 { "{Updated header}", "{Updated value}" },
 }
 });

Example of a request that will come to the webhook endpoint:

{
 "startedDateTime": "2024-06-07 08:37:09",
 "request": {
 "method": "POST",
 "url": "https://example.com/6e259560-25e5-482b-a7b2-8c5267ba6ae3/",
 "headers": [
 {
 "name": "connection",
 "value": "close"
 },
 {
 "name": "content-length",
 "value": "1421"
 },
 {
 "name": "content-type",
 "value": "multipart/form-data; boundary=\"62ec6524-9360-4e91-834f-e9531e2d2c30\""
 },
 {
 "name": "host",
 "value": "example.com"
 }
],
 "bodySize": 0,
 "postData": {
 "mimeType": "application/json",
 "text": ""
 }
 },
 "response": {
 "status": 200,
 "httpVersion": "HTTP/1.1",
 "headers": [
 {
 "name": "Content-Type",
 "value": "text/html"
 }
],
 "content": {
 "size": 145,
 "text": "This URL has no default content configured.",
 "mimeType": "text/html"
 }
 }
}

fast-report.com 91 / 101

Saving to S3 Storage
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

In this article, we will consider the method of sending a report to S3 storage. Instructions on how to work with
tasks are described in the General Information section.

Getting Started
You will need the following tools and capabilities:

1. Knowledge of using API key in Service solutions.

This article will skip additional information on authentication and authorization.

2. .NET SDK.

3. C# code editor or text editor, such as Visual Studio Code.

4. Report template.

It can be prepared using the free FastReport Community Designer program.

5. Active subscription to one of the following products: FastReport Cloud, FastReport Corporate Server, or
FastReport Publisher.

6. Internet access.

7. Configured and accessible S3 storage.

Note! This guide assumes that you already know how to develop your application in the C# programming
language.

Note! The points above describe the recommended tools.

Note! This guide assumes that you have configured S3 storage to accept files from external sources.

Creating a Task
Let's consider creating a template sending task to S3 storage:

fast-report.com 92 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://github.com/FastReports/FastReport/releases/tag/v2025.2.0

// Object initialization
 CreateS3UploadTaskVM s3UploadTaskVM = new CreateS3UploadTaskVM
 {
 Name = "S3 Sending Task",
 InputFile = new InputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 AccessKey = "{public_access_key}",
 SecretKey = "{secret_access_key}",
 Url = "https://example.com",
 BucketName = "{bucket_name}",
 UseAws = true,
 EnableSsl = true,
 Region = "us-east-1",
 DestinationFolder = "{/path_to_folder/}",
 SubscriptionId = "{workspace identifier}"
 };

 // Creating a task
 TaskBaseVM s3UploadTask = await tasksClient.CreateTaskAsync(s3UploadTaskVM);

 // Run task by identifier
 await tasksClient.RunTaskByIdAsync(s3UploadTask.Id);

Real object identifiers should be entered in the EntityId and SubscriptionId fields. Otherwise, the task will be
aborted with an error.

Executing Task from Request Body
// Run task from request body
 await tasksClient.RunTaskAsync(new RunS3UploadTaskVM
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{template identifier}",
 Type = FileKind.Template
 },
 AccessKey = "{public_access_key}",
 SecretKey = "{secret_access_key}",
 Url = "https://example.com",
 BucketName = "{bucket_name}",
 UseAws = true,
 EnableSsl = true,
 Region = "us-east-1",
 DestinationFolder = "{/path_to_folder/}",
 SubscriptionId = "{workspace identifier}"
 });

Note! In this case, the S3 sending will be performed directly by this request and the task will not be saved in
the database.

Updating Task by Identifier

fast-report.com 93 / 101

 await tasksClient.UpdateTaskAsync("{task identifier}", new UpdateS3UploadTaskVM()
 {
 InputFile = new RunInputFileVM
 {
 EntityId = "{updated template identifier}",
 Type = FileKind.Template
 },
 AccessKey = "{Updated public_access_key}",
 SecretKey = "{Updated secret_access_key}",
 Url = "Updated S3 storage address",
 BucketName = "{Updated bucket_name}",
 UseAws = true,
 EnableSsl = true,
 Region = "{Updated region}",
 DestinationFolder = "{/Updated_path_to_folder/}"
 });

fast-report.com 94 / 101

Static Preview Integration Guide
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

This guide provides comprehensive instructions for integrating Service solutions reports into your web
applications using iframes.

Basic Iframe Setup
Service solutions Static Preview service is designed to be easily embedded in your web applications using
iframes. This allows you to integrate report previews seamlessly into your existing user interfaces.

<iframe
 src="https://yourdomain.com/staticpreview/t/your-template-id?apikey=your-api-key"
 width="100%"
 height="600px"
 frameborder="0"
 style="border: 1px solid #ccc;">
</iframe>

� URL Structure
The iframe source URL follows this pattern:

https://yourdomain.com/staticpreview/{type}/{report-id}?{parameters}

Where:

{type} : Either t for templates or r for reports
{report-id} : Your template or report identifier
{parameters} : Query string parameters for authentication and configuration

Authentication Parameters
API Key Authentication

<!-- For API Key authentication -->
<iframe src="https://yourdomain.com/staticpreview/t/template-123?apikey=your-api-key-here"></iframe>

Parameter: apikey

Required: Yes (for API key auth)
Description: Your API key for FastReport Cloud, FastReport Corporate Server, or FastReport Publisher.
Example: apikey=dw3ized7i7i97qjsrg4mesn3n8r1bpi54wbyhywpfier7er3nqjo

Access Key Authentication

<!-- For Access Key authentication -->
<iframe src="https://yourdomain.com/staticpreview/r/report-456?accessKey=your-access-key"></iframe>

Parameter: accessKey

Required: Yes (for access key auth)
Description: Temporary access key for specific report access
Example: accessKey=temp-key-abc123def456

fast-report.com 95 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

Report Parameters
For templates that require parameters, use the rp parameter format:

<iframe src="https://yourdomain.com/staticpreview/t/sales-report?apikey=your-key&rp=StartDate:2023-01-
01&rp=EndDate:2023-12-31&rp=Region:North"></iframe>

Parameter: rp (Report Parameters)

Format: rp=ParameterName:ParameterValue
Multiple: Use multiple rp parameters for different values
Description: Sets initial values for report parameters
Examples:

Date: rp=StartDate:2023-01-01
String: rp=CustomerName:John Doe
Number: rp=MinAmount:1000
Boolean: rp=IncludeInactive:true

The parameters must be specified inside the report template.

Localization of UI
The service automatically detects locale from:

1. Server configuration (if available)
2. Browser language settings

Localization of Report
The report localization will be used from the report parameters itself. Or from the workspace parameters.

Responsive Iframe Examples
Full-width Responsive

<div style="position: relative; width: 100%; height: 0; padding-bottom: 75%;">
 <iframe
 src="https://yourdomain.com/staticpreview/t/template-123?apikey=your-key"
 style="position: absolute; top: 0; left: 0; width: 100%; height: 100%; border: none;"
 allowfullscreen>
 </iframe>
</div>

Modal/Dialog Integration

fast-report.com 96 / 101

<div class="modal" id="reportModal">
 <div class="modal-content" style="width: 90%; height: 90%;">
 <iframe
 id="reportFrame"
 src="https://yourdomain.com/staticpreview/t/template-123?apikey=your-key"
 style="width: 100%; height: 100%; border: none;">
 </iframe>
 </div>
</div>

<script>
function openReport(templateId, apiKey, parameters = {}) {
 const baseUrl = 'https://yourdomain.com/staticpreview/t/' + templateId;
 const params = new URLSearchParams({ apikey: apiKey });

 // Add report parameters
 Object.entries(parameters).forEach(([key, value]) => {
 params.append('rp', `${key}:${value}`);
 });

 document.getElementById('reportFrame').src = baseUrl + '?' + params.toString();
 document.getElementById('reportModal').style.display = 'block';
}

// Usage
openReport('sales-report', 'your-api-key', {
 StartDate: '2023-01-01',
 EndDate: '2023-12-31',
 Region: 'North America'
});
</script>

Recommended Iframe Dimensions
Minimum Width: 400px (for mobile compatibility)
Minimum Height: 300px (to show at least one page)
Recommended: 800px × 600px or larger
Full-screen: Use responsive design for best experience

Security Considerations
1. API Key Protection: Never expose API keys in client-side code for production
2. Access Keys: Use temporary access keys when possible
3. HTTPS: Always use HTTPS for iframe sources in production
4. CSP Headers: Configure Content Security Policy to allow iframe sources

<iframe src="..."></iframe>

Parameter Reference
PARAMETER TYPE REQUIRED DESCRIPTION EXAMPLE

apikey String Yes* API key for FastReport Cloud, FastReport Corporate
Server, or FastReport Publisher.

apikey=your-api-
key

accessKey String Yes* Temporary access key accessKey=temp-
key-123

fast-report.com 97 / 101

rp String No Report parameter in Name:Value format rp=StartDate:2023-
01-01

PARAMETER TYPE REQUIRED DESCRIPTION EXAMPLE

* Either apikey or accessKey is required depending on authentication method.

fast-report.com 98 / 101

User Security and CORS
Products: FastReport Cloud, FastReport Corporate Server, FastReport Publisher

FastReport Cloud, FastReport Corporate Server, FastReport Publisher takes user security seriously and
implements a strict CORS (Cross-Origin Resource Sharing) policy to protect data and prevent potential attacks.
This article details how CORS and Origin work in the context of FastReport Cloud and explains browser security
principles.

What is CORS and why is it important?
CORS (Cross-Origin Resource Sharing) is a browser security mechanism that determines whether a web page
can request resources from a different domain. Without CORS, browsers block cross-domain requests by
default according to the Same-Origin Policy.

Same-Origin Policy

A browser considers two URLs to belong to the same origin if they match:

Protocol (https/http)
Domain name
Port

For example:

https://app.fastreport.cloud and https://api.fastreport.cloud are different origins
https://example.com and https://subdomain.example.com are different origins

CORS Policy in FastReport Cloud, FastReport Corporate
Server, FastReport Publisher
FastReport Cloud, FastReport Corporate Server, FastReport Publisher implements a differentiated approach to
CORS depending on the user's authorization state:

Unauthorized Requests

For unauthorized users, the CORS policy is the most lenient:

Cross-domain requests to the cluster are allowed
The Origin header is not required
This allows the use of public APIs and functions without restrictions

Authorized Requests with Origin

Strict rules apply to authorized users:

Basic Authentication (
Authorization: Basic
...)

Bearer Token (
Authorization: Bearer
...)

The Origin header must be specified to receive permission from the browser

Cookie-based Authorization

To enhance security, the use of cookies in cross-domain requests (including when loading content into an
iframe from a different origin) is restricted. This prevents automatic sending of session cookies in potentially
unwanted requests. To embed reports via iframe, it is recommended to use an ApiKey, which allows bypassing

fast-report.com 99 / 101

https://www.fast-report.com/products/cloud
https://www.fast-report.com/products/corporate-server
https://www.fast-report.com/products/publisher

these restrictions.

Browser Security Mechanisms
FastReport Cloud, FastReport Corporate Server, FastReport Publisher correctly handles requests and returns
the appropriate CORS headers.

CORS Headers

The server returns the following headers:

Access-Control-Allow-Origin: https://your-domain.com
Access-Control-Allow-Credentials: true
Access-Control-Allow-Headers: *
Access-Control-Allow-Methods: GET, PUT, POST, DELETE, PATCH, OPTIONS

Setup and Usage
Origin Configuration

To ensure the system works correctly, you need to:

1. Specify the list of allowed Origins (Domains) in the workspace

Maximum of 10 domains
Only the domain needs to be specified (e.g., your-domain.com). FastReport Cloud, FastReport
Corporate Server, FastReport Publisher will automatically match the incoming Origin header against
this list. Wildcards (e.g., *.example.com) are not supported; specific domains must be listed.
The protocol (https) does not need to be specified, as the protocol will also be determined
automatically.

2. Using the Origins (Domains) list

The list of allowed domain names is configured by the administrator.
When a request is received from an authorized user, the cluster checks the request's Origin header
against this list and, if there is a match, returns the appropriate CORS headers.

Configuration Examples

For web applications:

Origin: https://your-app.com

For stand-alone applications and integrations:

Only pass the header if you implement standard browser security.

For API requests with authorization:

Practical Recommendations
For Developers

1. Always specify the Origin header for authorized requests (actually, the browser does this automatically for
cross-domain requests)

2. Check the list of allowed Origins in the workspace settings
3. Use HTTPS for all domains in the Origins list
4. Test CORS requests in the browser, not just via command-line tools

fast-report.com 100 / 101

For Administrators
1. Regularly review the Origins (Domains) list
2. Remove unused domains
3. Monitor for domain name changes
4. Update Origins (Domains) when migrating applications

Protection Against Common Attacks
CSRF (Cross-Site Request Forgery)

The CORS policy prevents malicious requests from being executed on behalf of an authorized user from other
sites.

XSS (Cross-Site Scripting)

Limiting Origins reduces the risk of using XSS vulnerabilities to steal data via cross-domain requests.

Clickjacking

Using proper X-Frame-Options and CORS headers helps prevent clickjacking attacks.

Conclusion
The CORS policy in FastReport Cloud, FastReport Corporate Server, FastReport Publisher provides a balanced
solution that ensures:

Maximum security for authorized users
Ease of use for unauthorized requests
Flexible configuration for various usage scenarios
Compatibility with modern browsers and their security mechanisms

Proper configuration of Origins and adherence to CORS rules allows FastReport Cloud, FastReport Corporate
Server, FastReport Publisher to be securely integrated into any web application, ensuring user data protection
and compliance with modern web application security standards.

fast-report.com 101 / 101

	Title
	Introduction
	Guides
	REST API
	Status codes
	Authentication and authorization
	Upload a new template
	Add a JSON data source
	Access permissions management by template example
	Prepare a report
	Report parameters
	Export report to PDF
	Add new users to the workspace
	Work with groups
	Work with tasks
	General Information
	Stored Tasks
	Tasks Executed from Request Body

	C# .NET
	Authentication and authorization
	Upload new template
	Access rights management by template example
	Create report
	Report parameters
	Export report to PDF
	Add new users to the workspace
	Work with groups
	Work with tasks
	General Information
	Stored Tasks
	Tasks Executed from Request Body
	Transformer Tasks
	Export Template
	Export Report
	Report Preparation

	Transport Tasks
	Sending via Email
	Saving to FTP Server
	Saving via Webhook
	Saving to S3 Storage

	Integrations
	Static Preview Integration Guide
	User Security and CORS

