
FastReport VCL
Programmer Manual
Version 2024.1
© 1998-2024 Fast Reports Inc.

www.fast-report.com 1 / 64

Working with TfrxReport component
Loading and saving a report

Designing a report

Running a report

Previewing a report

Printing a report

Loading and saving a finished report

Exporting a report

Creating a custom preview window

Building a composite report (batch printing)

Interactive reports

Access report objects from a code

Creating a report form from code

Creating a dialogue form from a code

Modifying_report_page's_properties

Report construction with the help of a code

Printing an array

Printing a TStringList

Printing a file

Printing a TStringGrid

Printing TTable and TQuery

Report inheritance

Multithreading

Reports caching

MDI architecture

www.fast-report.com 2 / 64

Loading and saving a report
By default, a report form is stored together with the project form, i.e. in a DFM file. In most cases, no more
operations required, and you thus would not need to take special measures to load a report. If you decided to store
a report form in a file or in the DB BLOb-field (this provides great flexibility, i.e. you can modify a report without
recompiling the program), you would have to use the TfrxReport methods for report loading and saving:

function LoadFromFile(const FileName: String; ExceptionIfNotFound: Boolean = False): Boolean;

Loads a report from the file with the given name. If the second parameter is equal to “True” and the file is not
found, then it generates an exception. If the file is loaded successfully, it returns “True.”

procedure LoadFromStream(Stream: TStream);

Loads a report from the stream.

procedure SaveToFile(const FileName: String);

Saves a report to a file with the specified name.

procedure SaveToStream(Stream: TStream);

Saves a report to a stream.

File with a report form has the “FR3” extension by default.

Examples:

Pascal:

frxReport1.LoadFromFile('c:\1.fr3');
frxReport1.SaveToFile('c:\2.fr3');

C++:

frxReport1->LoadFromFile("c:\\1.fr3");
frxReport1->SaveToFile("c:\\2.fr3");

www.fast-report.com 3 / 64

Designing a report
Calling the report designer is performed via the TfrxReport.DesignReport method. A designer must be included in
your project (it is enough to either use the TfrxDesigner component, or add the “frxDesgn” unit into the uses list).

The DesignReport method takes two default parameters:

procedure DesignReport(Modal: Boolean = True; MDIChild: Boolean = False);

The Modal parameter determines whether the designer should be modal. The MDIChild parameter allows to make
a designer window a MDI child window.

Example:

frxReport1.DesignReport;

www.fast-report.com 4 / 64

Running a report
Applying one of the following two TfrxReport methods starts a report:

procedure ShowReport(ClearLastReport: Boolean = True);

Starts a report and displays the result in the preview window. If the “ClearLastReport” parameter is equal to “False,”
then the report will be added to the previously constructed one, otherwise the previously constructed report will be
cleared (by default).

function PrepareReport(ClearLastReport: Boolean = True): Boolean;

Starts a report, without opening the preview window. The parameter assignment is the same as in the
“ShowReport” method. If a report was constructed successfully, it returns “True.”

In most cases, it is more convenient to use the first method. It displays the preview window right away, while a
report continues to be constructed.

The “ClearLastReport” parameter is convenient to use in case when it is necessary to add another report to the
previously constructed one (such technique is used for batch report printing).

Example:

frxReport1.ShowReport;

www.fast-report.com 5 / 64

Previewing a report
It is possible to display a report in the preview window in two ways: either by calling the TfrxReport.ShowReport

method (described above), or with the help of the TfrxReport.ShowPreparedReport method. In the second case, the
report construction is not performed, but a finished report is displayed. That means, that you should either
construct it beforehand with the help of the PrepareReport method, or load a previously constructed report from
the file (see Loading and saving a finished report).

Example:

Pascal:

if frxReport1.PrepareReport then
 frxReport1.ShowPreparedReport;

C++:

if(frxReport1->PrepareReport(true))
 frxReport1->ShowPreparedReport();

In this case, report construction is finished first, and after that it is displayed in the preview window. Construction of
a large report can take a lot of time, and that is why it is better to use the ShowReport anisochronous method, than
the PrepareReport / ShowPreparedReport one. One can assign preview settings by default via the
TfrxReport.PreviewOptions property.

www.fast-report.com 6 / 64

Printing a report
In most cases, you will print a report from the preview window. To print a report manually, you should use the
TfrxReport.Print method, for example:

frxReport1.LoadFromFile(...);
frxReport1.PrepareReport;
frxReport1.Print;

At the same time, the dialogue, in which printing parameters can be set, will appear. You can assign settings by
default, and disable a printing dialogue with the help of the TfrxReport.PrintOptions property.

www.fast-report.com 7 / 64

Loading and saving a finished report
It can be executed from the preview window. This also can be performed manually with the help of the
TfrxReport.PreviewPages methods:

 function LoadFromFile(const FileName: String; ExceptionIfNotFound: Boolean = False): Boolean;
 procedure SaveToFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);
 procedure SaveToStream(Stream: TStream);

Assignment and the parameters are similar to the corresponding TfrxReport methods. A file, which contains the
finished report, has “FP3” extension by default.

Example:

Pascal:

frxReport1.PreviewPages.LoadFromFile('c:\1.fp3');
frxReport1.ShowPreparedReport;

C++:

frxReport1->PreviewPages->LoadFromFile("c:\\1.fp3");
frxReport1->ShowPreparedReport();

Note: after finished report loading is completed, its previewing is executed via the ShowPreparedReport
method!

www.fast-report.com 8 / 64

Exporting a report
It can be performed from a preview window. The operation can also be executed manually, via the
TfrxReport.Export method. In the parameter of this method you should specify the export filter you want to use:

frxReport1.Export(frxHTMLExport1);

The export filter component must be available (you must put it on the form of your project) and be adjusted
correctly.

www.fast-report.com 9 / 64

Creating a custom preview window
FastReport displays reports in the standard preview window. If it does not suit you for some reason, a custom
preview form may be created. For this purpose, the TfrxPreview component from the FastReport component
palette was designed. To display a report, the link to this component should be assigned to the TfrxReport.Preview

property.

There is two typical problems when using TfrxPreview component. It does not handle keys (arrows, PgUp,
PgDown etc) and mouse wheel (if any). To make TfrxPreview working with keys, pass the focus to it (it can be
done, for example, in the OnShow event handler of a form):

frxPreview.SetFocus;

To make TfrxPreview working with mouse scroll, you have to create OnMouseWheel event handler of a form and
call TfrxPreview.MouseWheelScroll method in this handler:

procedure TForm1.FormMouseWheel(Sender: TObject; Shift: TShiftState;
 WheelDelta: Integer; MousePos: TPoint; var Handled: Boolean);
begin
 frxPreview1.MouseWheelScroll(WheelDelta, Shift, MousePos);
end;

www.fast-report.com 10 / 64

Building a composite report (batch printing)
In some cases it is required to organize printing of several reports at once, or capsulate and present several reports
in one preview window. To perform this, there are tools in FastReport, which allow building a new report in
addition to an already existing one. The TfrxReport.PrepareReport method has the optional «ClearLastReport»
Boolean parameter, which is equal to «True» by default. This parameter defines whether it is necessary to clear
pages of the previously built report. The following code shows how to build a batch from two reports:

Pascal:

frxReport1.LoadFromFile('1.fr3');
frxReport1.PrepareReport;
frxReport1.LoadFromFile('2.fr3');
frxReport1.PrepareReport(False);
frxReport1.ShowPreparedReport;

C++:

frxReport1->LoadFromFile("1.fr3");
frxReport1->PrepareReport(true);
frxReport1->LoadFromFile("2.fr3");
frxReport1->PrepareReport(false);
frxReport1->ShowPreparedReport();

We load the first report and build it without displaying. Then we load the second one into the same TfrxReport

object and build it with the «ClearLastReport» parameter, equal to «False». This allows the second report to be
added to the one previously built. After that, we display a finished report in the preview window.

www.fast-report.com 11 / 64

Numbering of pages in a composite report
You can use the «Page», «Page#», «TotalPages» and «TotalPages#» system variables for displaying a page number
or a total number of pages. In composite reports, these variables work in the following way:

Page – page number in the current report

Page# - page number in the batch

TotalPages – total number of pages in the current report (a report must be a two-pass one)

TotalPages# - total number of pages in a batch.

www.fast-report.com 12 / 64

Combination of pages in a composite report
As it was said above, the PrintOnPreviousPage property of the report design page lets you splice pages when
printing, i.e. using free space of the previous page. In composite reports, it allows to start creation of a new report
on free space of the previous report’s last page. To perform this, one should enable the PrintOnPreviousPage

property of the first design page of each successive report.

www.fast-report.com 13 / 64

Interactive reports
In interactive reports, one can define a reaction for mouse-click on any of the report objects in a preview window.
For example, a user can click on the data line, and thus run a new report with detailed data of the selected line.

Any report can become interactive. To perform this, you only need to create a TfrxReport.OnClickObject event
handler. Here is a code example of this handler below:

Pascal:

procedure TForm1.frxReport1ClickObject(Page: TfrxPage; View: TfrxView;
 Button: TMouseButton; Shift: TShiftState; var Modified: Boolean);
begin
 if View.Name = 'Memo1' then
 ShowMessage('Memo1 contents:' + #13#10 + TfrxMemoView(View).Text);
 if View.Name = 'Memo2' then
 begin
 TfrxMemoView(View).Text := InputBox('Edit', 'Edit Memo2 text:', TfrxMemoView(View).Text);
 Modified := True;
 end;
end;

C++:

void __fastcall TForm1::frxReport1ClickObject(TfrxView *Sender,
 TMouseButton Button, TShiftState Shift, bool &Modified)
{
 TfrxMemoView * Memo;
 if(Memo = dynamic_cast <TfrxMemoView *> (Sender))
 {
 if(Memo->Name == "Memo1")
 ShowMessage("Memo1 contents:\n\r" + Memo->Text);
 if(Memo->Name == "Memo2")
 {
 Memo->Text = InputBox("Edit", "Edit Memo2 text:", Memo->Text);
 Modified = true;
 }
 }
}

In the OnClickObject handler, you can do the following:

modify contents of an object or a page, passed to the handler (thus, the «Modified» flag should be specified,
so that the modifications would be taken into consideration);

call the TfrxReport.PrepareReport method for reconstructing/rebuilding a report.

In this example, clicking on the object with the «Memo1» name results in displaying a message with the contents of
this object. When clicking on the «Memo2,» a dialogue is displayed, where the contents of this object can be
modified. Setting of the «Modified» flag to «True» allows holding and displaying alterations.

In the same way, a different reaction for a click can be defined; it may, for example, run a new report. It is necessary
to NOTE the following. One TfrxReport component can display only one report in the preview window. That is
why one should run a report either in a separate TfrxReport object, or in the same one, but the current report

www.fast-report.com 14 / 64

must be erased.

To give a prompting indication about clickable objects to the end user, we can modify the mouse cursor when it
passes over a clickable object in the preview window. To do this, select the desired object in the report designer and
set it’s cursor property to something other than crDefault.

One more detail concerns the defining clickable objects. In simple reports, this can be defined either in the object’s
name, or in its contents. However, this cannot always be performed in more complicated cases. For example, a
detailed report should be created in a selected data line. A user clicked on the «Memo1» object with the '12'
contents. What data line does this object refer to? That is why you should know the primary key, which identifies
this line unambiguously. FastReport enables to assign a string, containing any data (in our case the data of the
primary key), to every report’s object. This string is stored in the TagStr property.

Let us illustrate this process by an example of a report, which is included in the FastReportDemo.exe - 'Simple list'
demo. This is the list of clients of a company, containing such data as «client’s name,» «address,» «contact person,»
etc. The data source is the «Customer.db» table from the DBDEMOS demo database. This table has a primary key,
i.e. the «CustNo» field, which is not presented in the report. Our task is to determine what record it refers to by
clicking on any object from the finished report, which means to get the value of the primary key. To perform this, it
is sufficient to enter the following value into the TagStr property of all the objects, lying on the Master Data band:

[Customers."CustNo"]

During a report’s building, the TagStr property’s contents are calculated in the same way, as contents of text
objects are calculated; this means that the variables’ values are substituted in place of all variables. A variable in this
particular case is what is enclosed into the square brackets. That is why the lines of the '1005', '2112', etc. types will
be contained in the TagStr property of the objects lying on the Master Data after report building. A simple
conversion from a string into an integer will give us a value of the primary key, with which a required record can be
found.

If the primary key is composite (i.e. it contains several fields) the TagStr property’s contents can be the following:

[Table1."Field1"];[Table1."Field2"]

After constructing a report, the TagStr property contains values of the '1000;1' type, from which it is rather not
difficult to get values of a key as well.

www.fast-report.com 15 / 64

Access report objects from a code
FastReport’ s objects (such as report page, band, memo-object) are not directly accessible from your code. This
means that you cannot address the object by its name, as, for example, when you addressing to a button on your
form. To address an object, it should be found with the help of the TfrxReport.FindObject method:

Pascal:

var
 Memo1: TfrxMemoView;
 Memo1 := frxReport1.FindObject('Memo1') as TfrxMemoView;

C++:

TfrxMemoView * Memo = dynamic_cast <TfrxMemoView *> (frxReport1->FindObject("Memo1"));

after that, one can address the object’s properties and methods. You can address the report’s pages using the
TfrxReport.Pages property:

Pascal:

var
 Page1: TfrxReportPage;
 Page1 := frxReport1.Pages[1] as TfrxReportPage;

C++:

TfrxReportPage * Page1 = dynamic_cast <TfrxReportPage *> (frxReport1->Pages[1]);

www.fast-report.com 16 / 64

Creating a report form from code
As a rule, you will create most reports using the designer. Nevertheless, in some cases (for example, when the
report’s form is unknown) it is necessary to create a report manually, from code.

To create a report manually, one should perform the following steps in order:

clear the report component

add data sources

add the "Data" page

add report’s page

add bands on a page

set bands’ properties, and then connect them to the data

add objects on each band

set objects’ properties, and then connect them to the data

Let us examine creation of a simple report of the «list» type. Assume that we have the following components:
frxReport1: TfrxReport and frxDBDataSet1: TfrxDBDataSet (the last one is connected to data from the DBDEMOS,
the «Customer.db» table). Our report will contain one page with the «Report Title» and «Master Data» bands. On
the «Report Title» band there will be an object with the "Hello FastReport!" text, and the «Master Data» one will
contain an object with a link to the "CustNo" field.

Pascal:

var
 DataPage: TfrxDataPage;
 Page: TfrxReportPage;
 Band: TfrxBand;
 DataBand: TfrxMasterData;
 Memo: TfrxMemoView;

{ clear a report }
frxReport1.Clear;

{ add a dataset to the list of ones accessible for a report }
frxReport1.DataSets.Add(frxDBDataSet1);

{ add the "Data" page }
DataPage := TfrxDataPage.Create(frxReport1);

{ add a page }
Page := TfrxReportPage.Create(frxReport1);

{ create a unique name }
Page.CreateUniqueName;

{ set sizes of fields, paper and orientation by default }
Page.SetDefaults;

{ modify paper’s orientation }
Page.Orientation := poLandscape;

{ add a report title band}
www.fast-report.com 17 / 64

{ add a report title band}
Band := TfrxReportTitle.Create(Page);
Band.CreateUniqueName;

{ it is sufficient to set the «Top» coordinate and height for a band }
{ both coordinates are in pixels }
Band.Top := 0;
Band.Height := 20;

{ add an object to the report title band }
Memo := TfrxMemoView.Create(Band);
Memo.CreateUniqueName;
Memo.Text := 'Hello FastReport!';
Memo.Height := 20;

{ this object will be stretched according to band’s width }
Memo.Align := baWidth;

{ add the masterdata band }
DataBand := TfrxMasterData.Create(Page);
DataBand.CreateUniqueName;
DataBand.DataSet := frxDBDataSet1;

{ the Top coordinate should be greater than the previously added band’s top + height}
DataBand.Top := 100;
DataBand.Height := 20;

{ add an object on master data }
Memo := TfrxMemoView.Create(DataBand);
Memo.CreateUniqueName;

{ connect to data }
Memo.DataSet := frxDBDataSet1;
Memo.DataField := 'CustNo';
Memo.SetBounds(0, 0, 100, 20);

{ adjust the text to the right object’s margin }
Memo.HAlign := haRight;

{ show the report }
frxReport1.ShowReport;

C++:

TfrxDataPage * DataPage;
TfrxReportPage * Page;
TfrxBand * Band;
TfrxMasterData * DataBand;
TfrxMemoView * Memo;

// clear a report
frxReport1->Clear();

// add a dataset to the list of ones accessible for a report
frxReport1->DataSets->Add(frxDBDataset1);

// add the "Data" page
DataPage = new TfrxDataPage(frxReport1);

// add a page
Page = new TfrxReportPage(frxReport1);

// create a unique name
Page->CreateUniqueName();

// set sizes of fields, paper and orientation by default
Page->SetDefaults();www.fast-report.com 18 / 64

Page->SetDefaults();

// modify paper’s orientation
Page->Orientation = poLandscape;

// add a report title band
Band = new TfrxReportTitle(Page);
Band->CreateUniqueName();

// it is sufficient to set the «Top» coordinate and height for a band
// both coordinates are in pixels
Band->Top = 0;
Band->Height = 20;

// add an object to the report title band
Memo = new TfrxMemoView(Band);
Memo->CreateUniqueName();
Memo->Text = "Hello FastReport!";
Memo->Height = 20;

// this object will be stretched according to band’s width
Memo->Align = baWidth;

// add the masterdata band
DataBand = new TfrxMasterData(Page);
DataBand->CreateUniqueName();
DataBand->DataSet = frxDBDataset1;

// the Top coordinate should be greater than the previously added band’s top + height
DataBand->Top = 100;
DataBand->Height = 20;

// add an object on master data
Memo = new TfrxMemoView(DataBand);
Memo->CreateUniqueName();

// connect to data
Memo->DataSet = frxDBDataset1;
Memo->DataField = "CustNo";
Memo->SetBounds(0, 0, 100, 20);

// adjust the text to the right object’s margin
Memo->HAlign = haRight;

// show the report
frxReport1->ShowReport(true);

Let us explain some details.

All the data sources, which are to be used in the report, must be added to the list of data sources. In our case, this is
performed using the

frxReport1.DataSets.Add(frxDBDataSet1)

line. Otherwise, a report will not work.

The "Data" page is necessary for inserting internal datasets such as TfrxADOTable into the report. Such datasets can
be placed only to the "Data" page.

The call for Page.SetDefaults is not necessary, since in this case a page will have the А4 format and margins of 0
mm. SetDefaults sets 10mm margins and takes page size and alignment, which a printers have by default.

www.fast-report.com 19 / 64

While adding bands to a page, you should make sure they do not overlap each other. To perform this, it is sufficient
to set the «Top» and «Height» coordinates. There is no point in modifying the «Left» and «Width» coordinates,
since a band always has the width of the page, on which it is located (in case of vertical bands it's not true – you
should set Left and Width properties and don't care about Top and Height). One should note, that the order of
bands’ location on a page is of great importance. Always locate bands in the same way you would do it in the
designer.

Objects’ coordinates and sizes are set in pixels. Since the Left , Top , Width , and Height properties of all objects
have the «Extended» type, you can point out non-integer values. The following constants are defined for converting
pixels into centimeters and inches:

fr01cm = 3.77953;
fr1cm = 37.7953;
fr01in = 9.6;
fr1in = 96;

For example, a band’s height equal to 5 mm can be set as follows:

Band.Height := fr01cm * 5;
Band.Height := fr1cm * 0.5;

www.fast-report.com 20 / 64

Creating a dialogue form from a code
As we know, a report can contain dialogue forms. The following example shows how to create a dialogue form,
with an «OK» button:

Pascal:

{ for working with dialogue objects the following unit should be used }
uses frxDCtrl;

var
 Page: TfrxDialogPage;
 Button: TfrxButtonControl;

{ add a page }
Page := TfrxDialogPage.Create(frxReport1);

{ create a unique name }
Page.CreateUniqueName;

{ set sizes }
Page.Width := 200;
Page.Height := 200;

{ set a position }
Page.Position := poScreenCenter;

{ add a button }
Button := TfrxButtonControl.Create(Page);
Button.CreateUniqueName;
Button.Caption := 'OK';
Button.ModalResult := mrOk;
Button.SetBounds(60, 140, 75, 25);

{ show a report }
frxReport1.ShowReport;

C++:

www.fast-report.com 21 / 64

// for working with dialogue objects the following unit should be used
#include "frxDCtrl.hpp"

TfrxDialogPage * Page;
TfrxButtonControl * Button;

// add a page
Page = new TfrxDialogPage(frxReport1);

// create a unique name
Page->CreateUniqueName();

// set sizes
Page->Width = 200;
Page->Height = 200;

// set a position
Page->Position = poScreenCenter;

// add a button
Button = new TfrxButtonControl(Page);
Button->CreateUniqueName();
Button->Caption = "OK";
Button->ModalResult = mrOk;
Button->SetBounds(60, 140, 75, 25);

// show a report
frxReport1->ShowReport(true);

www.fast-report.com 22 / 64

Modifying report page’s properties
Sometimes it is necessary to modify report page settings (for example, to modify paper alignment or size) from a
code. The TfrxReportPage class contains the following properties, defining the size of the page:

 property Orientation: TPrinterOrientation default poPortrait;
 property PaperWidth: Extended;
 property PaperHeight: Extended;
 property PaperSize: Integer;

The PaperSize property sets paper format. This is one of the standard values, defined in the Windows.pas (for
example, DMPAPER_A4). If a value to this property is assigned, FastReport fills the PaperWidth and PaperHeight

properties automatically (paper size in millimeters). Setting the DMPAPER_USER (or 256) value as a format, would
mean that custom paper size is set. In this case, the PaperWidth and PaperHeight properties should be filled
manually.

The following example shows, how to modify parameters of the first page (it is assumed that we already have a
report):

Pascal:

var
 Page: TfrxReportPage;

{ the first report’s page has [1] index. [0] is the Data page. }
Page := TfrxReportPage(frxReport1.Pages[1]);

{ modify the size }
Page.PaperSize := DMPAPER_A2;

{ modify the paper orientation }
Page.Orientation := poLandscape;

C++:

TfrxReportPage * Page;

// the first report’s page has [1] index. [0] is the Data page.
Page = (TfrxReportPage *)frxReport1.Pages[1];

// modify the size
Page->PaperSize = DMPAPER_A2;

// modify the paper orientation
Page->Orientation = poLandscape;

www.fast-report.com 23 / 64

Report construction with the help of a code
The FastReport engine usually is responsible for report’s constructing. It shows report’s bands in a particular order
as many times, as the datasource to which it is connected requires, thus forming a finished report. Sometimes it is
necessary to create a report of a non-standard form, which FastReport’s engine is unable to produce. In this case,
one can use the ability of constructing a report manually, with the help of the TfrxReport.OnManualBuild event. If to
define a handler of this event, the FastReport engine sends management to it. At the same time, allocation of
responsibilities for forming a report is changed in the following way:

FastReport engine:

report’s preparation (script, data sources initialization, bands’ tree forming)

all calculations (aggregate functions, event handlers)

new pages/columns’ forming (automatic showing a page/column header/footer, report title/summary)

other routine work

Handler:

bands’ presentation in a certain order

The OnManualBuild handler’s essence is to issue commands concerning presenting certain bands to the
FastReport’s engine. The engine itself will do the rest: a new page will be created, as soon as there is no place in the
current one; execution of scripts will be performed, etc.

The engine is represented with the TfrxCustomEngine class. A link to the instance of this class is located in the
TfrxReport.Engine property.

Property or method Description

procedure NewColumn Creates a new column. If a column is the last one, it creates a new page.

procedure NewPage Creates a new page.

procedure ShowBand(Band:
TfrxBand)

Shows a band.

procedure ShowBand(Band:
TfrxBandClass)

Shows a band of the given type.

function FreeSpace: Extended Returns the amount of free space on the page (in pixels). After the next band is
presented, this value descends.

property CurColumn: Integer Returns/sets the current column’s number

property CurX: Extended Returns/sets the current X position.

property CurY: Extended Returns/sets the current Y position. After the next band is presented, this value
ascends.

property DoublePass: Boolean Defines whether a report is a two-pass one.

www.fast-report.com 24 / 64

property FinalPass: Boolean Defines whether the current pass is the last one.

property FooterHeight:
Extended

Returns the page footer height.

property HeaderHeight:
Extended

Returns the page header height.

property PageHeight: Extended Returns the height of the page’s printable region.

property PageWidth: Extended Returns the width of the page’s printable region.

property TotalPages: Integer Returns the number of pages in a finished report (only on the second pass of the
two-pass report).

Property or method Description

Let us give an example of a simple handler. There is two «Master Data» bands in a report, which are not connected
to data. The handler presents these bands in an interlaced order, six times each one. After six bands, a small gap is
made.

Pascal:

var
 i: Integer;
 Band1, Band2: TfrxMasterData;

{ find required bands }
Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;
for i := 1 to 6 do
begin
 { lead/deduce bands one after another }
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 { make a small gap }
 if i = 3 then
 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
end;

C++:

www.fast-report.com 25 / 64

int i;
TfrxMasterData * Band1;
TfrxMasterData * Band2;

// find required bands
Band1 := dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData1"));
Band2 := dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData2"));
for(i = 1; i <= 6; i++)
{
 // lead/deduce bands one after another
 frxReport1->Engine->ShowBand(Band1);
 frxReport1->Engine->ShowBand(Band2);
 // make a small gap
 if(i == 3)
 frxReport1->Engine->CurY += 10;
}

The next example shows two groups of bands alongside each other.

Pascal:

var
 i, j: Integer;
 Band1, Band2: TfrxMasterData;
 SaveY: Extended;

Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;
SaveY := frxReport1.Engine.CurY;

for j := 1 to 2 do
begin
 for i := 1 to 6 do
 begin
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 if i = 3 then
 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
 end;
 frxReport1.Engine.CurY := SaveY;
 frxReport1.Engine.CurX := frxReport1.Engine.CurX + 200;
end;

C++:

www.fast-report.com 26 / 64

int i, j;
TfrxMasterData * Band1;
TfrxMasterData * Band2;
Extended SaveY;

Band1 = dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData1"));
Band2 = dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData2"));
SaveY = frxReport1->Engine->CurY;

for(j = 1; j <= 2; j++)
{
 for(i = 1; i <= 6; i++)
 {
 frxReport1->Engine->ShowBand(Band1);
 frxReport1->Engine->ShowBand(Band2);
 if(i == 3)
 frxReport1->Engine->CurY += 10;
 }
 frxReport1->Engine->CurY = SaveY;
 frxReport1->Engine->CurX += 200;
}

www.fast-report.com 27 / 64

Printing an array
The primary example’s code is located in the «FastReport Demos\PrintArray» ("FastReport Demos\BCB
Demos\PrintArray") directory. Let us explain several details.

To print an array, we use a report with one «Master Data» band, which will be presented as many times, as there
are elements in the array. To do this, place a TfrxUserDataSet component on the form, and then set it’s properties
(it is possible to do it in a code, as shown in our example):

 RangeEnd := reCount
 RangeEndCount := a number of elements in an array

After that, we connect the data-band to the TfrxUserDataSet component. To represent the array element, place a
text object with the [element] line inside the «Master Data» band. The «element» variable is filled using a
TfrxReport.OnGetValue event.

www.fast-report.com 28 / 64

Printing a TStringList
The primary example’s code is located in the «FastReport Demos\PrintStringList» («FastReport Demos\BCB
Demos\PrintStringList») directory. The method is the same, as in the example with an array.

www.fast-report.com 29 / 64

Printing a file
The primary example’s code is located in the «FastReport Demos\PrintFile» («FastReport Demos\BCB
Demos\PrintFile») directory. Let us explain several details.

For printing, you should use a report with a «Master Data» band, which will be printed once (to perform this, it
should be connected to a data source, which contains one record; select a source named "Single row" from the list).
Stretching («Stretch») and splitting («Allow Split») are enabled in the band. This means, that the way the band is
stretched allows finding room for all objects located in it. However, if a band does not find room in a page, it will be
presented partially in separate pages.

File contents are presented via the «Text» object, which contains the [file] variable. This variable, as in the previous
examples, is filled in the TfrxReport.OnGetValue event. Stretching is also enabled in the object (the «Stretch» item
from the contextual menu or the StretchMode property = smActualHeight).

www.fast-report.com 30 / 64

Printing a TStringGrid
The initial example’s code is located in the «FastReport Demos\PrintStringGrid» («FastReport Demos\BCB
Demos\PrintStringGrid»") directory. Let us explain some details.

The TStringGrid component represents a table with several rows and columns. That means that a report stretches
not only by height, but by width as well. To print such component, let us use the «Cross-tab» object (it becomes
available when the TfrxCrossObject component is added to the project). This object is responsible only for printing
table data with a number of rows and columns unknown beforehand. The object has two versions: TfrxCrossView

for user’s data printing, and TfrxDBCrossView for printing the specially prepared data from the DB table.

Let us use the TfrxCrossView . The object should be preliminarily set. To perform this, let us enter report’s designer
and call the object editor by double-clicking on it. We must set the number of the rows and columns’ titles nesting,
and the number of values in the table cells. In our case, all these values must be equal to «1». In our example, the
rows and columns’ titles and the total values of lines and columns are disabled as well.

It is necessary to fill the object with values from the StringGrid in the TfrxReport.OnBeforePrint event. A value is
added via the TfrxCrossView.AddValue method. Its parameters are the following: composite index of a line, a
column and the cell’s value (which is composite as well, since an object can contain several values in a cell).

www.fast-report.com 31 / 64

Printing TTable and TQuery
The initial example’s code is located in the «FastReport’s Demos\PrintTable» («FastReport Demos\BCB
Demos\PrintTable»") directory. The principle of work is the same, as in the example with the TStringGrid . In this
case, the row’s index is its sequence number, the column’s index is the name of a table field, and the cell’s value is
the table field’s value. It is important to notice that the functions for cell’s elements must be disabled in the «Cross-
tab» object editor (since in a cell there are data of various kinds, this leads to the error in table creation) and the
table title’s sorting must be disabled too (otherwise columns will be sorted alphabetically).

www.fast-report.com 32 / 64

Report inheritance
The report inheritance was described in the User's manual. We will describe some key moments here.

If you store your reports in files, you need to set up the folder name which FastReport will use to search the base
report. This folder's content will be displayed in the "File|New..." and "Report|Options..." dialogs:

The TfrxDesigner.TemplateDir property is used for this purpose. By defalt it is empty, FastReport will search for
base reports in the folder with your project's executable file (.exe). You can place the absolute or relative path into
this property.

If you store your reports in the database, you have to write a code to load the base report from a DB and to get a
list of available base reports. Use TfrxReport.OnLoadTemplate event to load a base report:

property OnLoadTemplate: TfrxLoadTemplateEvent read FOnLoadTemplate write FOnLoadTemplate;

TfrxLoadTemplateEvent = procedure(Report: TfrxReport; const TemplateName: String) of object;

This event's handler must load a base report with given TemplateName into Report object. Here is an example of
such handler:

www.fast-report.com 33 / 64

procedure TForm1.LoadTemplate(Report: TfrxReport; const TemplateName: String);
var
 BlobStream: TStream;
begin
 ADOTable1.First;
 while not ADOTable1.Eof do
 begin
 if AnsiCompareText(ADOTable1.FieldByName('ReportName').AsString, TemplateName) = 0 then
 begin
 BlobStream := TMemoryStream.Create;
 TBlobField(ADOTable1.FieldByName('ReportBlob')).SaveToStream(BlobStream);
 BlobStream.Position := 0;
 Report.LoadFromStream(BlobStream);
 BlobStream.Free;
 break;
 end;
 ADOTable1.Next;
 end;
end;

To get a list of available templates, you should use the TfrxDesigner.OnGetTemplateList event:

property OnGetTemplateList: TfrxGetTemplateListEvent read FOnGetTemplateList write FOnGetTemplateList;

TfrxGetTemplateListEvent = procedure(List: TStrings) of object;

This event's handler must return a list of available templates into List parameter. Here is an example of such
handler:

procedure TForm1.GetTemplates(List: TList);
begin
 List.Clear;
 ADOTable1.First;
 while not ADOTable1.Eof do
 begin
 List.Add(ADOTable1.FieldByName('ReportName').AsString);
 ADOTable1.Next;
 end;
end;

FastReport can inherit already created reports. For that you should use the following function:

TfrxReport.InheritFromTemplate(const templName: String; InheritMode: TfrxInheritMode = imDefault):
Boolean

This function allows to inherit the current loaded report from the indicated report. The first parameter of the
function is a file name of parent template, the second one allows to choose inherit mode:

imDefault - derive the dialogue with offer to rename/delete the duplicates
imDelete - delete all backup objects
imRename - rename all backup objects

Attention! The search of parent template is done referring the current template, that is necessary to keep
catalogues structure at report storage place. Fast Report uses relative paths that's why there is no need to

www.fast-report.com 34 / 64

worry about application transfer (the only exception is when the current pattern and parent template are placed
on different carriers or net path is used).

www.fast-report.com 35 / 64

Multithreading
FastReport can operate independently in different threads, but there are some features:

You can not create TfrxDBDataSet even in different threads, because "global list" is used for search and
access will always take place to the first created TfrxDBDataSet (you can switch off the use of global list, it is
active by default);

If during report execution there are some changes in object characteristics (for example,Memo1.Left :=
Memo1.Left + 10 in script), than you need to remember that during the next operation if the property
TfrxReport.EngineOptions.DestroyForms := False report template will already be modified and it will need to

be reloaded or to use TfrxReport.EngineOptions.DestroyForms := True. During renewal you can't use
interactive reports from the thread, because script's objects are deleted after renewal, that's why in some
cases it is efficiently to use TfrxReport.EngineOptions.DestroyForms := False and to renew the template on
your own during the next building cycle.

If necessary the global list due to which you can search the needed copies of TfrxDBDataSet can be switched off.

{ DestroyForms can be switched off, if every time you renew a report from a file or from a current }
FReport.EngineOptions.DestroyForms := False;
FReport.EngineOptions.SilentMode := True;

{ This property switches off the search through global list }
FReport.EngineOptions.UseGlobalDataSetList := False;

{ EnabledDataSets plays local list role, you should install it before the template is loaded }
FReport.EnabledDataSets.Add(FfrxDataSet);
FReport.LoadFromFile(ReportName);
FReport.PrepareReport;

www.fast-report.com 36 / 64

Reports caching
The reports and it's data can be cached both in memory (for speed increasing) and in file on the disk (for saving
RAM recourses). There are several types of caching in FastReport:

TfrxReport.EngineOptions.UseFileCache - if the property is installed in True, than the whole text and objects of
built report are saved in temporary file on disk, at that TfrxReport.EngineOptions.MaxMemoSize indicates how
many MB are meant for the template in RAM.

TfrxReport.PreviewOptions.PagesInCache - the number of pages which can be kept in cache memory greatly
increases preview speed, but spends much memory (especially when there are pictures in a template).

TfrxReport.PreviewOptions.PictureCacheInFile - if the property is on, than all the pictures of built report are
saved in temporary file on a disk, that greatly reduces memory use in reports with a large amount of pictures,
but it reduces the speed.

www.fast-report.com 37 / 64

MDI architecture
In FastReport there is a n opportunity of creating MDI applications both for preview and for designer. The source
code of the example is in FastReport Demos\MDI Designer catalogue.

It is worthy to mention that its advisable to create your own TfrxReport for each preview window or designer,
otherwise all windows will refer to the same report.

www.fast-report.com 38 / 64

Working with a list of variables
The notion of variables was minutely explained in the corresponding chapter. Let us briefly call to mind the main
points.

A user can specify one or several variables in a report. A value or an expression, which will be automatically
calculated when referring to a variable, can be assigned to every variable. Variables can be visually inserted into a
report via the “Data tree” window. It is convenient to use variables for aliasing of compound expressions, which are
often used in a report.

It is necessary to use the “frxVariables” unit when working with variables. Variables are represented by the
TfrxVariable class.

 TfrxVariable = class(TCollectionItem)
 published
 property Name: String; // Name of a variable
 property Value: Variant; // Value of a variable
 end;

The list of variables is represented by the TfrxVariables class. It contains all methods necessary for working with
the list.

 TfrxVariables = class(TCollection)
 public
 // Adds a variable to the end of the list
 function Add: TfrxVariable;

 // Adds a variable to the given position of the list
 function Insert(Index: Integer): TfrxVariable;

 // Returns the index of a variable with the given name
 function IndexOf(const Name: String): Integer;

 // Adds a variable to the specified category
 procedure AddVariable(const ACategory, AName: String; const AValue: Variant);

 // Deletes a category and all its variables
 procedure DeleteCategory(const Name: String);

 // Deletes a variable
 procedure DeleteVariable(const Name: String);

 // Returns the list of categories
 procedure GetCategoriesList(List: TStrings; ClearList: Boolean = True);

 // Returns the list of variables in the specified category
 procedure GetVariablesList(const Category: String; List: TStrings);

 // The list of variables
 property Items[Index: Integer]: TfrxVariable readonly;

 // Values of variables
 property Variables[Index: String]: Variant; default;
 end;

If the list of variables is long, it is convenient to group it by categories. For example, when having the following list
www.fast-report.com 39 / 64

of variables:

Customer name
Account number
In total
Total vat

one can represent it in the following way:

Properties
 Customer name
 Account number
Totals
 In total
 total vat

There are the following limitations:

at least one category must be created

categories form the first level of the data tree, variables form the second one

categories cannot be nested

variables’ names must be unique within a whole list, not within a category

www.fast-report.com 40 / 64

Creating a list of variables
A link to the report variables is stored in the TfrxReport.Variables property. To create a list manually, the following
steps must be performed:

clear the list

create a category

create variables

repeat the 2 and 3 steps to create another category.

www.fast-report.com 41 / 64

Clearing a list of variables
It is performed with the help of the TfrxVariables.Clear method:

Pascal:

frxReport1.Variables.Clear;

C++:

frxReport1->Variables->Clear();

www.fast-report.com 42 / 64

Adding a category
It is required to create at least one category. Categories and variables are stored in one list. The category differs
from a variable by the “space,” which is the first symbol of the name. All variables located in the list after the
category, are considered belonging to this category.

Process of adding a category to the list can be performed in two ways:

Pascal:

frxReport1.Variables[' ' + 'My Category 1'] := Null;

C++:

frxReport1->Variables->Variables[" My Category 1"] = NULL;

or

Pascal:

var
 Category: TfrxVariable;

Category := frxReport1.Variables.Add;
Category.Name := ' ' + 'My category 1';

C++:

TfrxVariable * Category;
Category = frxReport1->Variables->Add();
Category->Name = " My category 1";

www.fast-report.com 43 / 64

Adding a variable
Variables can be added only after a category is already added. All the variables located in the list after the category,
are considered belonging to this category. Variables’ names must be unique within the whole list, and not within a
category

There are several ways to add a variable to the list:

Pascal:

frxReport1.Variables['My Variable 1'] := 10;

C++:

frxReport1->Variables->Variables["My Variable 1"] = 10;

this way adds a variable (if it does not exist already) or modifies a value of the existing variable.

Pascal:

var
 Variable: TfrxVariable;

Variable := frxReport1.Variables.Add;
Variable.Name := 'My Variable 1';
Variable.Value := 10;

C++:

TfrxVariable * Variable;

Variable = frxReport1->Variables->Add();
Variable->Name = "My Variable 1";
Variable->Value = 10;

Both of the ways add a variable to the end of the list, therefore, it would be added to the last category. If a variable
is supposed to be added to a specified position of the list, use the “Insert” method:

Pascal:

var
 Variable: TfrxVariable;

Variable := frxReport1.Variables.Insert(1);
Variable.Name := 'My Variable 1';
Variable.Value := 10;

www.fast-report.com 44 / 64

C++:

TfrxVariable * Variable;

Variable = frxReport1->Variables->Insert(1);
Variable->Name = "My Variable 1";
Variable->Value = 10;

If a variable is to be added to the specified category, use the AddVariable method:

Pascal:

frxReport1.Variables.AddVariable('My Category 1', 'My Variable 2', 10);

C++:

frxReport1->Variables->AddVariable("My Category 1", "My Variable 2", 10);

www.fast-report.com 45 / 64

Deleting a variable
Pascal:

frxReport1.Variables.DeleteVariable('My Variable 2');

C++:

frxReport1->Variables->DeleteVariable("My Variable 2");

www.fast-report.com 46 / 64

Deleting a category
To delete a category with all its variables, use the following code:

Pascal:

frxReport1.Variables.DeleteCategory('My Category 1');

C++:

frxReport1->Variables->DeleteCategory("My Category 1");

www.fast-report.com 47 / 64

Modifying the variable’s value
There are two ways to modify the value of a variable:

Pascal:

frxReport1.Variables['My Variable 2'] := 10;

C++:

frxReport1->Variables->Variables["My Variable 2"] = 10;

or

Pascal:

var
 Index: Integer;
 Variable: TfrxVariable;

{ search for the variable }
Index := frxReport1.Variables.IndexOf('My Variable 2');
{ if it is found, change a value }
if Index <> -1 then
begin
 Variable := frxReport1.Variables.Items[Index];
 Variable.Value := 10;
end;

C++:

int Index;
TfrxVariable * Variable;

// search for the variable
Index = frxReport1->Variables->IndexOf("My Variable 2");
// if it is found, change a value
if(Index != -1)
{
 Variable = frxReport1->Variables->Items[Index];
 Variable->Value = 10;
}

It should be noted, that when accessing a report variable its value is calculated if it is of string type. That means the
variable which value is 'Table1."Field1"' will return a value of a DB field, but not the 'Table1."Field1"' string. You
should be careful when assigning a string-type values to report variables. For example, the next code will raise
exception "unknown variable 'test'" when running a report:

www.fast-report.com 48 / 64

frxReport1.Variables['My Variable'] := 'test';

because FastReport trying to calculate a value of such variable. The right way to pass a string values is:

frxReport1.Variables['My Variable'] := '''' + 'test' + '''';

In this case the variable value - string 'test' will be shown without errors. But keep in mind that:

string should not contain single quotes. All single quotes must be doubled;

string should not contain #13#10 symbols.

In some cases it is easier to pass variables using a script.

www.fast-report.com 49 / 64

Script variables
Instead of report variables, script variables are in the TfrxReport.Script . You can define them using FastScript
methods. Let's look at some differences between report and script variables::

Report variables Script variables

Placement In the report variables list,
TfrxReport.Variables .

In the report script, TfrxReport.Script.Variables .

Variable
name

May contain any symbols. May contain any symbols. But if you want to use that
variable inside the report script, its name should conform
to Pascal identificator specifications.

Variable
value

May be of any type. Variables of string type
are calculated each time you access them,
and are, in itself, an expressions.

May be of any type. No calculation is performed,
behavior is like standard language variable.

Accessibility Programmer can see the list of report
variables in the "Data tree" window.

The variable is not visible, programmer should know
about it.

Working with script variables is easy. Just assign value to the variable this way:

Pascal:

frxReport1.Script.Variables['My Variable'] := 'test';

C++:

frxReport1->Script->Variables->Variables["My Variable"] = "test";

In this case FastReport will create a variable if it is not exists, or assign a value to it. There is no need to use extra
quotes when assigning a string to that variable.

www.fast-report.com 50 / 64

Passing a variable value in the
TfrxReport.OnGetValue
The last way to pass a value to a report is to use TfrxReport.OnGetValue event handler. This way is convenient in
case you need to pass a dynamic value (that may change from record to record). Two previous ways are useful to
pass static values.

Let's look at example of using that way. Let's create the report and lay the "Text" object to it. Type the following text
in this object:

[My Variable]

Now create the TfrxReport.OnGetValue event handler:

procedure TForm1.frxReport1GetValue(const VarName: String;
 var Value: Variant);
begin
 if CompareText(VarName, 'My Variable') = 0 then
 Value := 'test'
end;

Run the report and we will see that variable is shown correctly. The TfrxReport.OnGetValue event handler is called
each time when FastReport finds unknown variable. The event handler should return a value of that variable.

www.fast-report.com 51 / 64

Working with styles
First of all, let us call to mind, what “style”, “set of styles” and “library of styles” are.

Style is an element, which possesses a name and properties, and determines design attributes, i.e. color, font and
frame. The style determines the way a report object should be designed. The objects such as TfrxMemoView have
the Style property, which is a property intended to set the style name. When applying a value to this property, the
style design attributes are copied to the object.

A set of styles consists of several styles, which refer to a report. The TfrxReport component has the Styles

property, which refers to the object of the TfrxStyles type. The set of styles also possesses a name. The set of
styles determines design of a whole report.

A styles library includes several sets of styles. It is convenient to perform a selection of a concrete set for report
design with the help of the library.

The TfrxStyleItem represents a style.

 TfrxStyleItem = class(TCollectionItem)
 public
 // Style name.
 property Name: String;

 // Background color.
 property Color: TColor;

 // Font.
 property Font: TFont;

 // Frame.
 property Frame: TfrxFrame;
 end;

The set of styles is represented by the TfrxStyles class. It comprises methods for performing such set operations
as reading, saving, adding, deleting, as well as searching for a style. The set of styles file has FS3 extension by
default.

www.fast-report.com 52 / 64

 TfrxStyles = class(TCollection)
 public
 // Creates the styles set. One can specify “nil” instead of “AReport,” however in this case a user
would be unable to use the “Apply” method.
 constructor Create(AReport: TfrxReport);

 // Adds a new style.
 function Add: TfrxStyleItem;

 // Returns the style with the given name.
 function Find(const Name: String): TfrxStyleItem;

 // Applies a set to a report.
 procedure Apply;

 // Returns the list of the styles names.
 procedure GetList(List: TStrings);

 // Reads a set.
 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);

 // Saves a set.
 procedure SaveToFile(const FileName: String);
 procedure SaveToStream(Stream: TStream);

 // The list of styles.
 property Items[Index: Integer]: TfrxStyleItem; default;

 // A set’s name.
 property Name: String;
 end;

In conclusion, the last TfrxStyleSheet class represents a styles’ library. It has methods for the library
reading/saving, as well as adding, deleting, and style sets’ searching.

www.fast-report.com 53 / 64

 TfrxStyleSheet = class(TObject)
 public
 // Constructs a library.
 constructor Create;

 // Clears a library.
 procedure Clear;

 // Deletes a set with certain number.
 procedure Delete(Index: Integer);

 // Returns the list of the names of styles’ sets.
 procedure GetList(List: TStrings);

 // Loads a library.
 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);

 // Saves a library.
 procedure SaveToFile(const FileName: String);
 procedure SaveToStream(Stream: TStream);

 // Adds a new set of styles to the library.
 function Add: TfrxStyles;

 // Returns a number of styles’ sets in the library.
 function Count: Integer;

 // Returns a set with the given name.
 function Find(const Name: String): TfrxStyles;

 // Returns a set number with the given name.
 function IndexOf(const Name: String): Integer;

 // The list of styles’ sets.
 property Items[Index: Integer]: TfrxStyles; default;
 end;

www.fast-report.com 54 / 64

Creation of style sets
The following code demonstrates processes of creation of styles set, and addition of two styles to a set. After these
operations are completed, the styles are applied to the report.

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := TfrxStyles.Create(nil);

{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';

{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReport1.Styles := Styles;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = new TfrxStyles(NULL);

// the first style
Style = Styles->Add();
Style->Name = "Style1";
Style->Font->Name = "Courier New";

// the second style
Style = Styles->Add();
Style->Name = "Style2";
Style->Font->Name = "Times New Roman";
Style->Frame->Typ << ftLeft << ftRight;

// apply a set to the report
frxReport1->Styles = Styles;

You can create and use a set in a different way:

Pascal:

www.fast-report.com 55 / 64

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;
Styles.Clear;

{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';

{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReport1.Styles.Apply;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;
Styles->Clear();

// the first style
Style = Styles->Add();
Style->Name = "Style1";
Style->Font->Name = "Courier New";

// the second style
Style = Styles->Add();
Style->Name = "Style2";
Style->Font->Name = "Times New Roman";
Style->Frame->Typ << ftLeft << ftRight;

// apply a set to the report
frxReport1->Styles->Apply();

www.fast-report.com 56 / 64

Modifying/adding/deleting a style
Modifying a style with the given name:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ search for a style}
Style := Styles.Find('Style1');

{ modify the font size }
Style.Font.Size := 12;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;

// search for a style
Style = Styles->Find("Style1");

// modify the font size
Style->Font->Size = 12;

Adding a style to the report styles set:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ add }
Style := Styles.Add;
Style.Name := 'Style3';

C++:

www.fast-report.com 57 / 64

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;

// add
Style = Styles->Add();
Style->Name = "Style3";

Deleting a style with a given name:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ delete }
Style := Styles.Find('Style3');
Style.Free;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;

// delete
Style = Styles->Find("Style3");
delete Style;

After modifications are accomplished, you should call the Apply method:

{ use modifications }
frxReport1.Styles.Apply;

www.fast-report.com 58 / 64

Saving/restoring a set
Pascal:

frxReport1.Styles.SaveToFile('c:\1.fs3');
frxReport1.Styles.LoadFromFile('c:\1.fs3');

C++:

frxReport1->Styles->SaveToFile("c:\\1.fs3");
frxReport1->Styles->LoadFromFile("c:\\1.fs3");

www.fast-report.com 59 / 64

Clear report styles
It can be performed in two ways:

frxReport1.Styles.Clear;

or

frxReport1.Styles := nil;

www.fast-report.com 60 / 64

Styles library creation
The following example illustrates how to create a library and add two sets of styles to it.

Pascal:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

StyleSheet := TfrxStyleSheet.Create;

{ the first set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles1';

{ here one can add styles to the Styles set}

{ the second set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles2';

{ here one can add styles to the Styles set}

C++:

TfrxStyles * Styles;
TfrxStyleSheet * StyleSheet;

StyleSheet = new TfrxStyleSheet;

// the first set
Styles = StyleSheet->Add();
Styles->Name = "Styles1";

// here one can add styles to the Styles set

// the second set
Styles = StyleSheet->Add();
Styles->Name = "Styles2";

// here one can add styles to the Styles set

www.fast-report.com 61 / 64

Displaying a list of style sets, and application of a
selected style
Style libraries are frequently used for displaying accessible style sets in such controls as “ComboBox” or “ListBox.”
After that, the set, selected by a user, is applied to a report.

Displaying the list:

StyleSheet.GetList(ComboBox1.Items);

Usage of the selected set to a report:

frxReport1.Styles := StyleSheet.Items[ComboBox1.ItemIndex];

or

frxReport1.Styles := StyleSheet.Find[ComboBox1.Text];

www.fast-report.com 62 / 64

Modification/adding/deleting of a styles set
Modification of a set with the specified name:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

{ search for the required set }
Styles := StyleSheet.Find('Styles2');

{ modify a style with the Style1 name from the found set }
with Styles.Find('Style1') do
 Font.Name := 'Arial Black';

Adding a set to a library:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

{ the third set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles3';

Deleting a set from a library:

var
 i: Integer;
 StyleSheet: TfrxStyleSheet;

{ search for the third set }
i := StyleSheet.IndexOf('Styles3');

{ if find, delete }
if i <> -1 then
 StyleSheet.Delete(i);

www.fast-report.com 63 / 64

Saving and loading a styles library
File extension for the styles library is “FSS” by default.

var
 StyleSheet: TfrxStyleSheet;

StyleSheet.SaveToFile('c:\1.fss');
StyleSheet.LoadFromFile('c:\1.fss');

www.fast-report.com 64 / 64

	Title
	Working with TfrxReport component
	Loading and saving a report
	Designing a report
	Running a report
	Previewing a report
	Printing a report
	Loading and saving a finished report
	Exporting a report
	Creating a custom preview window
	Building a composite report (batch printing)
	Numbering of pages in a composite report
	Combination of pages in a composite report

	Interactive reports
	Access report objects from a code
	Creating a report form from code
	Creating a dialogue form from a code
	Modifying_report_page's_properties
	Report construction with the help of a code
	Printing an array
	Printing a TStringList
	Printing a file
	Printing a TStringGrid
	Printing TTable and TQuery
	Report inheritance
	Multithreading
	Reports caching
	MDI architecture

	Working with a list of variables
	Creating a list of variables
	Clearing a list of variables
	Adding a category
	Adding a variable
	Deleting a variable
	Deleting a category
	Modifying the variable’s value
	Script variables
	Passing a variable value in the TfrxReport.OnGetValue

	Working with styles
	Creation of style sets
	Modifying/adding/deleting a style
	Saving/restoring a set
	Clear report styles
	Styles library creation
	Displaying a list of style sets, and application of a selected style
	Modification/adding/deleting of a styles set
	Saving and loading a styles library

