

FastReport v2.4
Report generator

Developer's manual

- 1 -

Table of contents
INTRODUCTION ...5

PREFACE... 6
COMMENTS ABOUT FASTREPORT ... 7
THE HISTORY OF FASTREPORT .. 8
BUILDING REPORTS.. 9

Data.. 9
Parameters ... 10
Forms ... 10
Processing.. 11
Preparing reports... 12

EXAMPLE: BUILDING A SIMPLE REPORT ... 13

THE FASTREPORT KERNEL ...15

DELPHI COMPONENT PALETTE ... 16
"FastReport" tab .. 16
"FR Tools" tab ... 18
TfrReport component ... 19
TfrDBDataSet component .. 22
TfrUserDataSet component.. 23

FASTREPORT OBJECTS ... 24
The "Text" object.. 25
The "Band" object .. 28
The Picture object .. 30
The SubReport object ... 31
The Line object... 31
The CheckBox object.. 31
The RichText object.. 32
The OLE object .. 32
The Chart object... 33
The Shape object .. 35
The Barcode object .. 35
The RichText 2.0 object.. 36

BUILDING THE REPORT... 37
Bands in the FastReport... 38
Simple report (list) ... 42
Master-detail report ... 42
Master-detail-subdetail report ... 42
Cross-tab report... 42
Dynamic reports... 43
Broken bands ... 44
Multicolumn report .. 45
Report with title page... 45
Nested reports (subreports).. 45
Master-Detail-Detail report... 45
Composite report.. 46
Report with BLOb fields... 46
Report without bands ... 46
Report with groups... 46
Report with charts.. 47

THE DESIGNER...49

THE DESIGNER ... 50
Using the keyboard .. 51
Using the mouse... 51
Report options .. 52
Page options... 53
The “Paper” tab .. 53
The “Paper source” tab... 53
The “Margins” tab .. 53
Designer options .. 55
The Object Inspector.. 57

- 2 -

The “Insert data fields” window.. 58
The Data dictionary ... 59
The Expression builder .. 64
"Insert data field" dialog ... 64
"Insert variable" dialog ... 64
"Insert function" dialog.. 65
Toolbars ... 67
The "Standard" toolbar.. 67
The "Text" toolbar.. 68
The "Rectangle" toolbar .. 69
The "Alignment " toolbar ... 69

END-USER FEATURES ..71

INTRODUCTION .. 72
THE DIALOGUE FORMS ... 73

Dialogue Form Controls.. 74
Label .. 74
Edit ... 75
Memo.. 75
Button... 76
CheckBox ... 76
RadioButton ... 77
ListBox ... 77
ComboBox.. 78
Passing the information to the Report ... 80

DATA ACCESS COMPONENTS.. 81
Description of FastReport DB-aware components .. 82
TfrBDELookupComboBox ... 83
TfrBDETable.. 83
TfrBDEQuery ... 86
TfrBDEDataBase ... 87
Building Reports .. 89
SIMPLE “TABULAR” TYPE REPORT ... 89
Report with parameters.. 90

THE TFRDATASTORAGE COMPONENT.. 92
CONNECTING TO A DATABASE.. 92
OPENING A TABLE ... 93
GENERATING A QUERY.. 94
FIELDS EDITOR ... 95
CREATING LOOKUP FIELDS ... 96
QUERY PARAMETERS EDITOR.. 97
JOINING DATA ... 97
PARAMETERS DIALOG ... 98
DESIGNER OF PARAMETERS DIALOG ... 98

BUILT-IN LANGUAGE ... 100
Scripts and objects ... 100

CODE WRITING... 101
Objects modification .. 103
Built-in functions.. 104
Aggregate functions ... 104
String functions .. 104
Properties and methods of objects ... 107
Using the interpreter.. 118

PROGRAMMING...119

EVENT HANDLERS.. 120
Other events of TfrReport object.. 120

VARIABLES.. 122
EXTENDING FASTREPORT FUNCTIONALITY.. 124

Making your own preview windows... 124
Expanding the functions list ... 125

EXAMPLES OF REPORTS...127

- 3 -

EXAMPLES OF REPORTS.. 128
Insertion of graphs and diagrams in the report ... 129
Controlling the logic of report composition using the OnManualBuild event... 132
Manual report composition at runtime using code .. 133
Printing of column reports with variable or unknown number of columns ... 134
Column reports with variable width of the columns .. 136

- 4 -

INTRODUCTION

Preface

Comments about FastReport

The history of FastReport

Stages of building report

Building simple report

- 5 -

PREFACE
This manual assumes you are familiar with report writers and understand the basic concepts

of report writers (i.e. bands, data sources, two-pass reports, etc.). The manual will help you get
started creating reports with FastReport, but it won’t help you with the basics of report writers.

If you are not familiar with report writers, we suggest you consult the QuickReports help
system. A manual for QuickReports may also be included with your copy of Delphi. The basic
concepts of QuickReports apply in most cases to FastReport, however, FastReport offers far more
flexibility and end-user customisation.

- 6 -

COMMENTS ABOUT FASTREPORT
FastReport is a highly flexible report designer, whereby data for the report can be obtained

from just about any type of data source, including strings lists, BDE databases, ADO datasources
(without using the BDE), Interbase (using IBO), Pascal arrays and records, to name just a few!

The entire FastReport system in written entirely in Delphi Pascal. The FastReport system
does not require any Dll’s to be installed and adds approximately 400kb (Delphi 5) to your empty
project. If you want end-user designer capabilities, this will add an additional 500kb to your .EXE.
Although this may seem large, this is a fraction of any other report writer. You also need to consider
that FastReport includes the ability of the end-user to not only change the design of the report, but
also the ability to change the queries and databases which the report draws its data from. FastReport
even includes its own scripting language, to ensure any report can easily be changed by both the
programmer and the end-user. If many of your applications use FastReports, you can simply deploy
the FastReport BPL (around 1400kb) and all your programs will remain small.

FastReport has one of the most attractive user interfaces you will find, with all the latest user
interface components, such as dockable toolbars. Your end-users will definitely approve of the
designer, where most reports can be created using only the mouse.

FastReport has not named FastReport for nothing: compare it to any other Delphi report
writer and you will find nothing comes close to it in terms of speed. The report preview window also
leaves most report writers in the dust with its sleek, highly polished look, giving your application an
extremely professional look.

FastReport is a proven report writer which has been around for over 3 years and has grown
from strength to strength offering features no other Delphi report writer can match.

- 7 -

THE HISTORY OF FASTREPORT
FastReport was borne out of necessity. While I was developing a salary calculation system in

1997, I looked around for a report writer which allowed me to create reports easily and which
allowed me to be able to modify the reports at run-time. However, at the time no components were
freely available which suited my needs. As such, I went about creating my own reporting tool and
FastReport was born.

The basic concept for FastReport was taken from “1S-Bookkeeping” 6.0 for Windows,
whereby the basic reporting element is a framed rectangle object with multi-line text inside it. This
text can contain a mixture of standard text as well as variables. Variables, such as data fields, are
denoted by enclosing them in square brackets. The first version of the report generator only
supported one band, but it allowed the creation of multi-level reports. It was also not a component,
but merely a set of units.

Later, in 1998, the report generator became a fully fledged Delphi component. At this point,
its name became “FastReport” and it offered increased functionality. Today, FastReport is a fully-
fledged, industrial-strength visual report generator. Some of its capabilities include:

• Built-in report designer, which is also available at run-time (great for end-user report

modifications!).
• Preview similar to MS Word print preview.
• Compiles directly into the Delphi EXE, no DLL’s required.
• JPEG (using Delphi library) and GIF (using RX library) support.
• Fast- performance comparable to QuickReport1 with far more features.
• Compact, pure Delphi code– without the designer its footprint is smaller than QR3!
• Powerful band-oriented report generator like QuickReports and ReportBuilder.
• Set of very useful components including: Text, Line, Picture, Shape, OLE object, RichText, RX

Rich 2.0, Chart, Barcode, shadowed text.
• Unlimited number of pages in the prepared report.
• Multi-page reports; composite reports; sub-reports; groups; multi-column reports; master-detail-

detail reports; cross-tab reports; two-pass reports.
• Full control over the printing process; supports all paper sizes.
• TXT, RTF (with graphics), CSV, HTML (with graphics) export filters.
• Text search in the report preview.
• Additional component TfrDataStorage allows for the creation of tables and queries at run-time.

This is especially useful for end-user reports to give them total control over the reporting process.
• The pages of the prepared report can be edited.
• A built-in, Pascal-like interpreter is included for very flexible reporting! Syntax highlighting is

supported using a freely available freeware library.
• The report data can be stored in the Delphi DFM file, an external file, a BLOb field of DB table

or can be streamed.
• FastReport can easily be extended by creating your own report components, wizards and function

libraries.
• IBObjects supported in reporter core (without the BDE).
• Interbase Express (IBX) support.
• ActiveX Data Objects (ADO) support in reporter core.
• Complete data manager functionality (without the BDE).

- 8 -

Building reports
Building reports consist of the following stages:

We will look into each of these stages and their realization in FastReport. Also we will compare
these stages in Fastreport to some other report generators.

Data
The majority of reports are founded on data from a database. Delphi itself gives efficient mechanisms
for accessing databases. These mechanisms are also used in FastReport. The TTable and TQuery
components can be used as sources for a report. In general it is possible to use any descendant from a
TDataSet component. The access to data is realized inside the FastReport kernel without interference
of a programmer.

Except data, stored in a database, FastReport can use practically any sources (arrays, files,
StringGrids etc). In such cases a programmer must take care of accessing the non-database source
itself. In Fastreport there is a set of events that allows a programmer to pass data to the FastReport
kernel.

Accessing data is approximately alike in all report generators. All report generators can deal with
DB-aware components, placed on the project forms. Except access to data, FastReport,
ReportBuilder, and QR+QRDesigner allows creating new components in run-time. In FastReport the
creation of DB-aware components are comparable to those that are used in the Delphi IDE. In the
same way, just like in Delphi, you place components on a form and change its properties in the
Objects Inspector. Component ideology is very flexible: it is possible to easily create new
components for support of different database engines.

- 9 -

Parameters
Users can be asked for input (parameters). Examples of user-input are: ranges of dates, a company’s
name, an invoice number, etc. Some reports don't use parameters at all or use fixed parameters
(without requesting their values in a dialog).

The handling of parameters are differently realized in report generators. In ReportBuilder and
QR+QRDesigner there is the possibility of requesting parameters if the report uses data from a query.
For dialogue with a user a standard dialog window is used. Besides that, for requesting parameters it
is also possible to use forms, created in the Delphi IDE. But this requires some changes to
programming logic and you must recompile your project.

FastReport, on the contrary, allows end users to develop the dialog forms. This process is like the
building forms in the Delphi IDE: there is set of standard controls, which can be dropped on the
dialog form. If necessary you then can change their properties. Also, the built-in language in
FastReport allows you to create dialogues by using pascal-like programming logic and pass the
entered values to the kernel.

The possibility of creating your own dialogues is very useful. Other possibilities (creating data
sources, use of the built-in language, etc.) allows you to create universal reports i.e. reports,
independent from the application (compiled and build project). This allows you to create new reports
and modify existing reports without rebuilding or recompiling the project.

Forms
The report form itself presents a set of elements, describing how exactly the report must look. For
grouping elements upon their location in reports, FR uses bands. There are two types of bands:
service bands (report headers, page numbering, etc.) and bands that are forming multi line parts of
reports (hereafter: data-bands). Data-bands are connected to the data sources, and the content is
shown as long as there are records in the underlying data source.

The visual environment of report development – the designer - is used for building reports. In the
FastReport designer you can develop reports, combining power, simplicity and comfort of use. The
interface of the designer consists of instrument panels (toolbars). Of course you can change the place
of these toolbars, as you like. To manipulate object's properties an Objects Inspector can be used,
similar to the one used in Delphi.

- 10 -

Processing
Processing input data, modification of report forms or components are stages (processes) in the
building of a report. An example of such a process is showing negative amounts in red. A more
complex example of a process is printing the total amount of soled products to a customer, which is
presented in the group footer (or a group header).

Realizing such a process is possible by writing event handlers in Delphi and exactly so it can be done
in FastReport, QR, or ReportBuilder. This way is not universal since it does not allow creating new
reports outside of Delphi without rebuilding the project. This is why in FastReport (and
ReportBuilder) a built-in language is applied, analogue to Pascal, but simplified. Scripts written in
this language are event handlers, fired before the processing of objects. This enables you to create
complex processes without writing code in Delphi, and, accordingly, without linking the report to a
project.

The possibilities of the built-in language of FastReport are very extensive. In scripts you can use all
properties and methods of objects used in a report that are available, as well as variables and data
fields. In scripts it is also possible to create variables and arrays, which then, on their turn, will be
available in all report.

- 11 -

Preparing reports
Prepared reports are products of activity of the FastReport kernel and can be previewed after clicking
the "Preview" button. Unlike many report generators, which keep the content of report pages in
metafiles (i.e. images in EMF format), in FastReport the prepared report presents a set of objects,
describing the content of each page of the processed report. This allows you to modify the prepared
report, by loading the necessary page in the designer. Besides, it is possible to describe the reaction
on mouse clicks on objects in the preview window. This allows for easily organizing your work
(clicking on a report object causes the generation of a new report with more detailed information).

The preview window of FastReport differs from the ones used in other report generators. In
particular, in FastReport viewing documents is used as in Microsoft Word: in a window it is possible
to immediately see several pages. Besides that you can also search throughout the text in all the
documents.

- 12 -

Example: building a simple report
Let's build one of the simplest reports in FastReport:

1. place three components on a form: TTable (or a TQuery), TfrDBDataSet and TfrReport. Your
form should look like this:

2. link the TTable component with a database (set its DatabaseName and TableName properties).
3. link the DataSet property of the TfrDBDataSet component with the TTable object. At this stage

the forms *dfm code will look like this:

object Form1: TForm1
 Caption = 'Form1'
 object frReport1: TfrReport
 Left = 16
 Top = 8
 end
 object frDBDataSet1: TfrDBDataSet
 DataSet = Table1
 Left = 56
 Top = 8
 end
 object Table1: TTable
 Active = True
 DatabaseName = 'DBDEMOS'
 TableName = 'employee.db'
 Left = 96
 Top = 8
 end
end

4. start the report designer (double-click on the TfrReport component);
5. click on the button "Insert data fields" on the toolbar;
6. choose the necessary fields in the dialog and press OK button.

Now the report contents all the fields which you've choosed:

- 13 -

It is possible to use automatically generated report as a template, which can also contain graphics,
headlines or footers, numbers of pages, etc.

To run the report, press the "Preview" button on the toolbar. FastReport now builds the report
and shows its content in the preview window:

- 14 -

The FastReport kernel

Delphi component palette

FastReport objects

Report types

- 15 -

Delphi component palette
After installing FastReport, two additional tabs will be created in the Delphi component

palette: the "FastReport" tab and the "FR Tools" tab. The first tab contains the main FastReport
components, such as TfrReport, TfrDesigner, etc. The second tab contains additional components
used by FastReport which can also be used in your applications.

"FastReport" tab

Icon

Name Description

TfrReport This is the main report generator component. To edit your

reports, double click on this component at design-time to open the
Report Designer window. This component is required for all
reports. It defines the design and layout of the report.

TfrCompositeReport The composite report component. This is used when you need to

combine several reports into a single report. For this type of
report, you must provide a list of TfrReport objects that will be
combined. This component is only required if you are building
composite reports.

TfrDBDataSet This component provides a data source connection for the report.

This data source can either be obtained from a Ttable (via its
DataSet property) or a TDataSource (via its DataSource property).
This component is optional but is required to connect to a
database. One instance of this component is required for each
data-enabled band in the report.

TfrUserDataSet This component provides a data source connection for the report.

This differs from the TfrDBDataset in such that you must provide
the data programmatically using events. This data source allows
you to print virtually anything such as an array, a string grid or a
text file. The OnFirst, OnNext and OnCheckEOF events are
defined for record navigation of the data source. This component
is required only when you need to print reports where the data
source is not a supported database format. One instance of this
component is required for each data-enabled band in the report.

TfrOLEObject Additional FastReport objects. The functions for each of these

objects are discussed below. These components must be dropped
onto the form if your report uses any of their functionality.

TfrRichObject

TfrCheckBoxObject

- 16 -

TfrShapeObject

TfrBarcodeObject

TfrChartObject

TfrRoundRectObject

TfrTextExport Export filters. These components are used to export your reports

to one of the supported external file formats. (Currently: Text,
RTF, CSV and HTML). Only required if you need export
functionality.

TfrRTFExport

TfrCSVExport

TfrHTMExport

TfrDesigner This is the end-user, run-time report designer. Only required if

you need the report designer at run-time.

TfrDataStorage This component allows the end-user to create tables and queries.

This component is obsolete. Use TfrDialogControls and
TfrBDEComponents instead. Only required if you want to give
the end-user the ability to create tables and queries.

TfrPreview This component is required if you want to create your own

preview windows.

TfrPrintTable This component prints a TTable or a TQuery's contents on-the-fly.

TfrPrintGrid This component prints a TDBGrid's contents on-the-fly.

TfrDialogControls This add-in component contains a set of dialog controls that can

be used to create dialog boxes at run-time. Only required if your
reports contain internal dialog forms.

TfrBDEComponents This add-in component contains a set of database access objects

such as TTable, TQuery and TDataBase. Only required if your
reports contain internal database components.

- 17 -

"FR Tools" tab

Icon

Name Description

TfrSpeedButton An enhanced TSpeedButton. Can have the "flat" look (Flat
property) and you can optionally have it change its color when the
mouse moves over it (GrayedInactive property).

TfrDock Used in creating dockable toolbars.

TfrToolBar A toolbar component that simulates the MS Office toolbar.

TfrTBButton Toolbar button.

TfrTBSeparator Toolbar separator.

TfrTBPanel A toolbar area that can contain other Delphi controls like
TComboBox, TEdit, etc.

TfrOpenDBDialog "Open DB table" dialog box. Displays a modal dialog box for
selecting a BDE alias.

TfrComboBox A flat TComboBox.

TfrFontComboBox A flat TComboBox that contains the list of installed fonts.

TfrComboEdit An edit control with a customizable button at the right.

Let's take a quick look at the main FastReport components.

- 18 -

 TfrReport component
This is the main FastReport component. It contains methods for loading, saving, previewing

and printing reports. Each TfrReport component can only contain a single report.

TfrReport properties.

Property Default
value

Description

DataSet - Points to a TfrxxxDataSet. The number of records in this data
source defines how many times the report will be built and
printed. (see also: ReportType property)

GrayedButtons False If True, the toolbar buttons of the designer and preview
windows will be displayed in grayscale.

InitialZoom pzDefault Defines the initial zoom value of the preview.

MDIPreview False Displays the preview window as a MDI child window.

ModalPreview True If True, the preview window will be modal.

ModifyPrepared True If True, the prepared report can be modified under the preview
window by double-clicking on the page.

Preview - Points to a TfrPreview. If this property is set, the prepared
report will be shown in this component.

PreviewButtons All Defines the set of buttons that will be available in the preview
window.

ReportType RtSimple Defines how to interpret the data source connected to the
DataSet property. If ReportType = rtMultiple, the report will
be built as many times as the number of records in the
connected data source. This is useful for printing a report
multiple times based on a list (i.e. the data source).

ShowProgress True If True, displays a progress window when preparing, printing or
exporting reports.

StoreInDFM False If True, stores report in the DFM file. Note: Reports saved in
DFM files will not be modifiable since it will be stored in the
executable file (EXE)!

Title - The report title. This is the name displayed in the preview
window and is the title assigned to the print job.

Note: TfrReport.StoreInDFM property is False by default. It means that your report

must be stored in a external file or alternately, in a database BLOb or binary field. If you want
to store your report in the DFM resource (like in other reporting tools such as QuickReport and

- 19 -

ReportBuilder), set this property to True. But remember – this will require you to recompile your
application whenever a report is modified!

TfrReport events.

Event

Description

OnBeforePrint This event will be fired before printing the report. Note: FastReport objects
are not components, so they are not visible in Object Inspector. You will not
be able to assign event handlers to each object individually. Instead, you
can use common event handlers like OnBeforePrint, OnBeginBand and
OnEndBand.

OnBeginBand This event is fired before printing a band.

OnBeginColumn This event is fired before printing a cross-tab column.

OnBeginDoc This event is fired at the beginning of a report.

OnBeginPage This event is fired at the beginning of a page.

OnEndBand This event will fire after printing a band.

OnEndDoc This event will fire at the end of a report.

OnEndPage This event will fire at the end of a page.

OnGetValue This event is fired when FR finds an unknown variable in the expression.
The assigned event handler must return the value for this variable.

OnManualBuild Assigning a handler to this event will enable you to build the report
manually. (i.e. show necessary bands programmatically in code). See demo:
DEMOS\MANUAL.

OnMouseOverObject This event fires every time the mouse moves over any object in the preview
window. The event handler should return the cursor type (e.g. "pointing
hand" cursor) for this object. This enables the user to see which objects are
"clickable" and which are not.

OnObjectClick This event will fire when you've clicked on an object in the preview window.

OnPrintColumn This event will fire before printing a cross-tab column. The event handler
can return the width of the column.

OnProgress This event fires periodically during long time operations. The event handler
can display the progress of the work done so far.

OnUserFunction This event is fired when FR finds an unknown function in the expression.
The event handler should return a value of this function.

- 20 -

Basic TfrReport methods.

Method

Description

LoadFromFile,
LoadFromStream,
LoadFromBlobField

Loads a report from an external file, a stream or a BLOb field.

SaveToFile,
SaveToStream,
SaveToBlobField

Saves the report to an external file, a stream or a BLOb field.

DesignReport

Runs the report designer. You should include the designer component
(TfrDesigner) in your application to have this functionality.

ShowReport

Builds the report and displays it in the preview window. Note: After
closing the preview window, the prepared report will be destroyed and
saving it to a file, exporting or printing will not be possible.

PrepareReport

Builds the report without previewing. This method should be called
before calling ShowPreparedReport, PrintPreparedReport,
PrintPreparedReportDlg, ExportTo or SavePreparedReport methods.

LoadPreparedReport

Loads a previously prepared report (.FRP file) from an external file.

SavePreparedReport Saves the prepared report to an external file.

ShowPreparedReport Shows a previously prepared report.

PrintPreparedReport

Prints a previously prepared report.

PrintPreparedReportDlg

Displays the print dialog before printing a previously prepared report.

ExportTo Exports a previously prepared report using one of export filters.

- 21 -

 TfrDBDataSet component
 The non-visual component TfrDBDataSet is used to move through a dataset with methods
like First, Next and Prior. It is similar to ReportBuilder’s TppBDEPipeline component but is used
only for navigation and does not provide field data to the report.

Property

Description

CloseDataSource Closes related datasource after the report is built.

DataSet A DataSet like TTable or TQuery.

OpenDataSource Opens the datasource before building the report.

RangeBegin First record in the dataset.

RangeEnd Last record in the dataset.

The Dataset property of this component links to a TDataSet component like TTable or

TQuery. Set OpenDataSource and CloseDataSource to True to automatically open and close the
related dataset.

RangeBegin and RangeEnd are used to select the range of records.

RangeBegin can take the following values:
• rbFirst – start record selection from the first record;
• rbCurrent – start record selection from the current record.

RangeEnd can take the following values:
• reLast – stop record selection at the last record;
• reCurrent – stop record selection at the record that was the current record when you started the

report;
• reCount – stop after N records are selected. Number of records to select is stored in the

RangeEndCount property.

- 22 -

 TfrUserDataSet component
This component is also used to navigate a dataset but it uses data structures such as array,

StringGrid, external file and so forth, instead of a database, as the source for the data.

Event

Description

OnCheckEOF Event handler takes one parameter - EOF of Boolean type. Set this
parameter to True to stop navigation.

OnFirst Event handler must set pointer to the first record.

OnNext Event handler must set pointer to the next record.

OnPrior Event handler must set pointer to the prior record.

In this case the Words "pointer" and "record" are allegorical and not literal. If you are

working with data from an array, "record" is the row of the array and "pointer" is the variable that
stores the current row number.

Navigation methods are called in the following manner: OnFirst, OnCheckEOF, OnNext,

OnCheckEOF, OnNext, ..., OnCheckEOF, OnNext. If the report has groups, then the method OnPrior
is also called after the group ends.

If you know the number of "records" before building the report, you can use the RangeEnd

and RangeEndCount properties. Just set RangeEnd := reCount and RangeEndCount := number of
records (for instance, number of array's rows). In this case, you can leave the OnCheckEOF event
handler empty. To find the current row's position, use the RecNo: Integer property. At the First
position RecNo = 0.

- 23 -

FastReport objects

Icon

Name Description

Text Provides a framed rectangle with multi-line text inside. Text also can
contain variables.

Band Band area. Defines where the band’s contents will be placed in the final
report.

Picture Shows BMP, ICO, WMF, EMF and JPG picture formats. Source can be
a BLOB field. Uncomment the corresponding line in FR.inc to enable
JPG format in FR.

 SubReport Intended for creation of subreports. When you insert this object into a
report, you'll see that a new page is added to your report.

Line Draws horizontal or vertical lines on the report.

 Shadowed
text

Provides Multi-line text inside a framed rectangle with optional shadow
area and/or gradient fill. Useful for printing labels.

Barcode Shows data in barcode format.

Shape Allows insertion of geometrical shapes in the report (rectangle, rounded
rectangle, ellipse, triangle).

CheckBox Shows Boolean data as either a checkmark or an X.

RichText Designed for the insertion of RTF (Rich Text format) documents into the
report. Source can be a BLOB field.

 OLE Designed for the insertion of an OLE object into the report.

Chart Designed for the insertion of charts or diagrams into the report. TeeChart
component must be installed in Delphi for this to work.

 RichText 2.0 Similar to the RichText component but will also allow pictures and OLE
objects inside the RTF text. Source can be a BLOB field.
TrxRichEdit component and RX library must be installed in Delphi to use
this component. Uncomment the corresponding line in FR.inc to enable
in FR.

- 24 -

 The "Text" object
This object is undoubtedly the most powerful and flexible object in FastReport. Basically, it

provides you with a framed rectangle of multi-line text. You can set the frame type, color and width;
as well as the font attributes, text alignment and font rotation (horizontal or vertical). To set the
object's attributes, use the "Text" and "Rectangle" toolbars:

The contents of a text object basically consist of a memo type object, which may include:
text, variables, data fields, or any combination of these. The font formatting will be applied to all text
contained within the text object.

Some examples of using text objects:
Length, см: [Length] - This shows some fixed text (Length, CM) followed by a variable ([Length])

Length, см: [Table1."Length_cm"] - This shows some fixed text (Length, CM) followed by a data
field ([Table1."Length_cm"])

Length, см: [[Length inch] * 2.54] - This shows some fixed text (Length, CM) followed by a
variable used with a formula, ([[variable] * value]). It is important to note the additional set of
square brackets when using formulas with variables.

Length, см: [Table1."Length_in" * 2.54] - This shows some fixed text (Length, CM) followed by a
data field used in a formula ([datafield * value]). Notice the single set of square brackets is required
for data fields and formulas.

The fastest way to edit a text object is to select the desired rectangle (by clicking on it) and
then double click on it in the report editor. This will bring up the memo editor dialog:

Here is a short description of the toolbar buttons:
 Inserts an expression;

- 25 -

 Inserts a data field;
 clipboard operations;

 turns on/off word wrapping;
 turns on/off the script editor;
 Cancel button;
 OK button.

From the editor you may type in text, insert variables, data fields or expressions. Clicking on

the "Data field" or "Expression" buttons in the memo editor dialog will display the currently
available data fields or variables. You may also use the following keys:

Insert “Variable” button - brings up the variable dialog.
Ctrl+Enter “OK” button - accepts and closes the dialog.
Esc “Cancel” button - closes and cancels editing.

Each text object can also have its own formatting style. You can edit the format by clicking
on the "DisplayFormat" property of the text object in the Object Inspector. Formatting options
include: no formatting, displaying as a numeric value, date, time or boolean formatting.

For each formatting category, you can choose one of several predefined formatting options, or
you may perform custom formatting (for example, #,##0.000 for a numeric value). Formatting is
done the same way as Delphi formats strings (this is described in Delphi online help system, see the
"Formatting strings" topic). Boolean values can be formatted by using the following formatting:
False_string;True_string. (i.e. to show yes or no, use No;Yes as the format).

The formatting is applied to each and every variable in the memo. If a variable cannot be
formatted, it will be shown as plain text. If you use several variables within a text object, but you
want to use different formatting for each variable, you may override the default formatting by using
the «#» tag followed by the formatting style. Put this formatting tag and the format string inside of
the variable brackets, i.e.:

[Variable #format], where format is one of following values:

• x.x or Nx.x or Nyyyyy - numeric formatting. x.x - length of number/number of digits in fraction

part; yyyyy - string like #,##0.00 (described in Delphi online help system, "Formatting strings"
topic). If the x.x or yyyyy string contains any «.», «,», «-» characters, this character will be used
as the decimal/fractional separator.

- 26 -

• Dxxxxx, Txxxxx - date and time. xxxxx – a string like dd.mm.yy.
• Bxxxxx;yyyyy - boolean formatting. If the value is False, the xxxxx string will be shown;

otherwise the yyyyy string will be shown.

Here are some examples of using the «#» tag:

[Table1.«N1» #9.2] [Table1.«N2» #N9-2] [Table1.«N3» #N#,##0.00] - numeric formatting
[Table1.«Date1» #Ddd.mm.yyyy] [Table1.«Time» #Thh:mm:ss] - date/time formatting
[Table1.«Bool1» #BFalse;True] [Table1.«Bool2» #BNo;Yes] - boolean formatting

You cannot use the formatting tag in expressions that have been created in the variables editor
(see below).

For reports where you would like to have objects change their font color, background color
etc. based on a specific condition or expression, click the button in the Text formatting toolbar.
This will bring up the “Conditional highlighting” dialog where you may enter the conditions to be
satisfied in the text box and select the various options available.

For example, assume it is necessary to pick out orders exceeding $1,000.00, Demo report "3-
level" is an example of this. To achieve this, select the rectangle containing sum order and click on
the highlight button in the formatting toolbar. In the textbox of the dialog type the condition “Value >
1000” without quotes. Select an appropriate font & background color then click on the Ok button.
Your report will now show any orders over $1000.00 highlighted with the chosen color. Try various
combinations of font styles and background colors to achieve the results you need.

By right clicking on the "Text" object you can set the following options:
• Stretched – the object has a variable height depending on the actual number of text strings in it.

You should also turn on this option in the object’s parent band. When this band is printed, it will
calculate the maximum height of all objects with the Stretched option and stretch itself.

• Word wrap – long strings are wrapped to make several lines of text.
• AutoWidth – before drawing, the object calculates its actual width.
• TextOnly – do not process variables in the object.
• Suppress repeated values – do not show repeated values.

Also you can find some additional properties in the Object Inspector:

• CharSpacing – extra space between chars;

- 27 -

• GapX, GapY – left and top gaps;
• LineSpacing – extra space between lines of a text.

 The "Band" object
Like all other visual report designers, FastReport is a band-based report generator. This

means you place bands on a report and then place data into the band. The table below lists the types
of bands which FastReport currently supports and where they will appear in the final report.

NOTE: The bands do not have to appear in the correct order in the Report designer. The band type
governs where they will be located on the final report. However, placing bands in the correct order
makes it much easier to modify them later.

Name Where and when
Report title

Printed at the beginning of the report

Report summary

Printed at the end of the report

Page header

Printed at the top of each page

Page footer

Printed at the bottom of each page

Master header

Printed at the beginning of the first data level

Master data

Data of the 1st data level– repeated for each master data record

Master footer

Printed at the end of the first data level

Detail header

Printed at the beginning of 2nd data level

Detail data

Data of the 2nd data level– repeated for each detail record

Detail footer

Printed at the end of 2nd data level

Subdetail header

Printed at the beginning of the 3rd data level

Subdetail data

Data of the 3rd data level– repeats once for each sub-detail record

Subdetail footer

Printed at the end of 3rd data level

Overlay

Printed on each page using a lower page layer (useful for
printing watermarks)

Column header

Printed at the beginning of the column

Column footer

Printed at the end of the column

Group header

Group title printed at the beginning of group

Group footer

Printed after group

Cross header This group of bands is designed for creating cross-tab reports

- 28 -

Cross data
Cross footer

which have a variable amount of columns on the page.

Child This band can be added to another band of any type (except
Cross and Page footer). Child band is showed after parent band.

 As you can see, the set of bands is different from those generally accepted. In the classical
scheme (in particular, in ReportBuilder) there is only one data-band Detail.

 Depending on the band type, FastReport shows appropriate editor.

For bands which display data from a data source (the detail data band, master data band, etc.),
you will be will be asked where this band will obtain its data from. You will be presented with a list
of all available datasets or you can select the "virtual" dataset option.

When you select the virtual dataset option, you must specify the number of “records”
contained within the “virtual dataset”. The band then behaves as if the specified number of records
actually exists. Virtual datasets can help you print forms, where multiple lines need to be printed, but
you don’t want to manually insert each one. You can simply design one line and repeat it the required
number of times using a virtual dataset.

If you select the group header band type, you will be presented with the group header editor.

This editor allows you to define the grouping condition, based on the fields in the table or on any
other expression (i.e. group the data based on the first character of the surname, as used in telephone
directories).

If you right-click on a band, you will also see a number of options in the context menu. These
include:
• Stretch – This means the height of the band is determined by the tallest object within the band.

“Text” objects will be stretched as required and the word-wrap option should also be enabled.
This allows for automatic adjustment of the band (row) height as required so that all data fits into
the row.

• Breaked – This will try to fill any unused space on the page before creating a new page.

- 29 -

• Force new Page – This will force the band’s contents to be printed on a new page.
• On first page – The band should print on the first page (applicable to page header & page footer

bands only).
• On last page – The band should print on last page (applicable to page footer bands only).
• Repeat on all pages – This option is only available for Master header, Detail header, Sub-detail

header, Group header and Cross header bands. If the amount of data below these headers forces a
new page, these headers will also be included on that page.

 The Picture object
The Picture object is used for inserting graphics into a report. Image formats supported

include BMP/WMF/ICO. JPG and GIF images can also be inserted but are not directly supported as
they require additional Delphi graphic support libraries. These libraries are are freely available
elsewhere.

The Picture object Editor is used to choose an image, clear an image, or select an image from
a BLOb field of a database table. To insert an image from a file, double-click on the Picture Object.
To insert an image from a BLOb field, select the Picture object, press Ctrl + Enter to invoke the Text
Editor, then reference the fieldname of the BLOb in the memo editor, for example:
[Table1.GraphicField]. This operation can also be performed by selecting from the Insert Data Field
in theText Editor.

If encrypted images in a database are to be printed directly, use the OnBeforePrint event to

decrypt the image and load it into the report at run-time. An example using ADO and SQL Server is
given later in the manual.
If images to be printed are stored on disk, use the TfrReport.OnBeforePrint to load and the images
before printing. An example of printing thumbnails for a given directory can be found at the end of
the manual.

The context menu of the picture object allows the following options to be set:

• Stretch - image will stretch to fill the rectangle.
• Maintain Aspect ratio - if stretch is selected image proportions are preserved.
• Center - centers the image in the rectangle.

- 30 -

• BlobType – type of BLOb stream: BMP, WMF, ICO or JPG. This is necessary because Delphi
can not handle stream type automatically. Use the Object Inspector to set this property.

 The SubReport object
A Subreport object is used as a placeholder for inserting additional reports at a particular

point in a report. The report which will be printed within the Subreport must be placed on a separate
page within the main report. An example of when to use a Subreport object is inserting a chart below
or next to some sales figures.

When inserting a Subreport object into a report, an additional page is automatically inserted

into the main report. The Subreport object automatically points to this newly created page. Anything
added to the new page will be printed within the Subreport object instead of being shown on the main
report.

Subreport objects can be placed next to or below the main report. If multiple Subreport

objects are to be placed below one another, insert them into separate databands.

There are some limitations when using Subreports:

• Columns can not be used
• The following bands can be used in a Subreport (but not in the associated main report): Report

Title, Report Summary, Page Header, Page Footer, ColumnXXX bands.
• Breaked bands can not be used
• Groups can not be used within a Subreport.

 The Line object
The Line object can be is used to insert horizontal or vertical lines into a report. Lines can be

used when separating details within a report, making it easier to read. The thickness and color of the
line can be adjusted using the drawing toolbar.

To draw a line, click on the Line toolbar button, move the mouse over the active page and the

cursor will change to a pencil indicating a line is about to be drawn. Position the mouse at the point
where the line is to start. Press and hold down the left mouse button and move drag to the point
where the line is to end. Release the mouse button and the line is drawn. The line can then be
selected for editing it as required.

 The CheckBox object
The Checkbox object is used to graphically show Boolean data and should only be linked to a

Boolean variable or data field. When the value of the variable or field is True, the cross will be
displayed. If the value is False, nothing will be shown.

Note: If a Checkbox object is inserted into a report, a TfrCheckBoxObject component must be
inserted into the same form or an error message will be generated at run-time.

- 31 -

 The RichText object
The RichText object is used to print RTF (Rich Text format) documents. The RichText object

should be used when formatted text is required on a report and a Text object can not be used.

The Richtext object will provide a high level of text formatting control which the FastReport

Text object cannot provide. RTF files can easily be created in programs such as Microsoft Word or
the included RTF editor, which is based on the Delphi RTF editor, can be used. A RichText object
will retain and render all the formatting in an RTF file.

The RTF editor included with FastReport provides for all the basic RTF operations on text.
Variables can be inserted into the formatted text. These variables must be enclosed in square brackets
(as in Text object).

The RichText object can also be used to print formatted text contained within a database

BLOb field. To select the required field, press Ctrl+Enter to invoke the text editor then either enter
the table field in square brackets , for example: [Table1."RichField"], or click on Insert Data Field
and select the required datasource and field.

Note: A TfrRichObject object must be inserted onto the same form. If not included, an error message
will be generated.

 The OLE object
The OLE object is used to insert an OLE object into a report. The OLE object’s editor allows

insertion of a new OLE object. Click on insert in the editor to invoke the standard OLE insert dialog
window to be presented with a list of available OLE objects.

- 32 -

The OLE object can be used to utilise OLE objects contained with a BLOb field. To do this,
press Ctrl+Enter to open the OLE Object inspector, select Insert, and find the OLE object required.

Note 1. The Stretched option in the context menu sometimes corrects the viewing of Excel data.
Note 2: a TfrOLEObject component must be used on the same the form. If not, an error message will
be generated at run-time.

 The Chart object
The Chart object is used to insert charts or diagrams into a report. This is especially useful

for printing sales figures.

The Type tab of the chart editor is used to pick from six types of charts and their display

options as follows:
• 3D – shows chart in 3-dimension;
• Single – should be turned on (reserved for further use);
• Show legend – shows legend near by chart;
• Show axis – shows axis (should be turned off if chart type is pie-chart);
• Show marks – shows marks;
• Multi-color – shows chart values with several colors.

- 33 -

To link the chart to the data fields, you should set the names of two Text objects i.e. two data

fields, already on the report. The contents of these fields will be used as the chart value and legend
strings. The Legend will normally be in the X-axis, the Value in the Y-axis of the chart. When
building the report, the contents of the select Text objects will be accumulated in the memo of chart
object. Right Click on the Chart object, select Edit then Data, and the Legend/Data can be selected
i.e. legend might be “memo2”, values might be “memo6”. (See demo for further example).

The Chart object allows the creation of ‘Top-10’ charts. This will chart represent several of
the biggest values and summary of other values not included in chart. To do this, set the number of
top values on Data tab of Chart editor and set the Legend name for non-included values (‘Others’
word is usual used).

The Marks tab of the chart editor allows the type of marker shown to be selected. ‘Value’ is

the default. If any other selection is made the Marks option of the display tab must be set.

If the Text object being used as a Chart value contains a formatted value (for example, 10
000.00 or $100.00), the Chart object attempts to expand the numeric value from this string. It skips
all non-digit symbols at the beginning and end of the string, then skips all symbols – e.g. digit
separators. If more advanced formatting is set (for example, 10000km2), these values can not be
used as Chart values. Non-visible, non-formatted objects should be created for these values, and
non-visible objects created used as the Chart values. Objects can be hidden by setting the Visible
property of the object to False in the Object Inspector.

- 34 -

Chart values are accumulated in the Memo of the Chart object:

Header1;Header2;Header3
Value1;Value2;Value3.

A Chart can also be built by using the Text Editor (Ctrl+Enter). Insert the appropriate values into the
Memo of the object.
Note 1: The TeeChart component is available in Delphi 3 and above. To use in Delphi 2, install the
TeeChart component first, then correct the FR.INC file and recompile the FR library.
Note 2: A TfrChartObject component must be on the the form. If not, an error message will be
generated at run-time.

 The Shape object
The Shape object is used to insert geometrical shapes in a report. i.e. (rectangle, rounded

rectangle, ellipse, triangle).

Note 1: When using the triangle shape, the background and fill colors default to white and these
cannot be changed.

Note 2: A TfrShapeObject component must be on the form. If not, an error message will be
generated at run-time.

 The Barcode object
The Barcode object is used for printing barcodes. The width of the barcode is determined

automatically by the amount of data it represents. The following barcode formats are supported:

• 2 of 5 interleaved

• Code39

• Code39 Extended

• Code128A-C

• Code93

• Code93 Extended

• MSI

• PostNet

• Codebar

• EAN8

• EAN13

• EAN128A-C

• UPC A, E0, E1, Supp2, Supp5

- 35 -

Hint: If whitespace is needed around the barcode, set the FrameTyp property to 15 (this will draw a
frame around the entire object), the FrameWidth to 6.00 and FrameColor to clWhite. This can also
be achieved this using the border toolbars buttons.

Note : A TfrBarcodeObject component must be on the form. If not, an error message will be
generated at run-time.

 The RichText 2.0 object
 The RichText 2.0 object is similar to the RichText object except that it is based on RX Rich
control. It can contain OLE objects and images inside RTF text. This object can be used if the RX
library installed (required RXLib ver.2.60 or above). To activate this object, remove the comment
from line {$DEFINE RX} of file FR.INC and recompile FR packages.

Note: A TfrRxRichObject component must be on the form. If not, an error message will be generated
at run-time.

- 36 -

Building the report
To start building report, use TfrReport object from FR component palette. It can store

one report, load and save it, run, preview and print. Double-click on this component at design-time
and you will be presented with report designer.

The most of reports contains data from databases. To access this data, FR uses standard

Delphi db-aware components TTable and TQuery . Of course, you can use ANY other
components based on TDataSet and TField.

FR, as all other report generators, uses bands to logical grouping report data. Bands are

divided on two categories: data-bands (master data, detail data, …) and other (report title, page
header, …). Data-bands presents the multi-line part of a report, for instance, the rows of the TTable.
That’s why you should assign a dataset to such band. FastReport has two components for this:

TfrDBDataset and TfrUserDataset from FR component palette. Actually TfrDBDataSet
component is the connector between db-aware component like TTable and between the data-band.
The TfrUserDataset component is used when you deal with non-DB data such as array, grid etc.

Well, before building a report, you must:

a) place TfrReport component on the form;
b) place db-aware components like TTable, TQuery on the form, if your report will use DB data;

c) for each data-band level used in your report you must create connector (TfrDBDataset or

TfrUserDataset) and tune its properties.

- 37 -

Bands in the FastReport
 FastReport has 22 bands. All they listed here.

Name Where and when
Report title

Printed at the beginning of the report

Report summary

Printed at the end of the report

Page header

Printed at the top of each page

Page footer

Printed at the bottom of each page

Master header

Printed at the beginning of the first data level

Master data

Data of the 1st data level– repeated for each master data record

Master footer

Printed at the end of the first data level

Detail header

Printed at the beginning of 2nd data level

Detail data

Data of the 2nd data level– repeated for each detail record

Detail footer

Printed at the end of 2nd data level

Subdetail header

Printed at the beginning of the 3rd data level

Subdetail data

Data of the 3rd data level– repeats once for each sub-detail record

Subdetail footer

Printed at the end of 3rd data level

Overlay

Printed on each page using a lower page layer (useful for
printing watermarks)

Column header

Printed at the beginning of the column

Column footer

Printed at the end of the column

Group header

Group title printed at the beginning of group

Group footer

Printed after group

Cross header
Cross data
Cross footer

This group of bands is designed for creating cross-tab reports
which have a variable amount of columns on the page.

Child This band can be added to another band of any type (except
Cross and Page footer). Child band is showed after parent band.

 As you can see, the set of the bands differs from “classic” schema that is used in the
ReportBuilder (here and after – ReportBuilder 4.x). On this schema, the report itself has a dataset and
it presents the first data level. The second data level is formed by the detail band. In other words,
classic schema allows you to create master-detail reports. If you want more detail levels, you obliged

- 38 -

to use sub-report which is actually another report placed on the separate page. Sub-report also used
for master-detail-detail reports.

 With the schema that is used in the FastReport, you may not use subreports. As you can see
in the table, you can use up to three data levels in one report (bands master data, detail data and
subdetail data). Each data-band that presents one level of the data, must have a connector

TfrDBDataset or TfrUserDataset assigned to it. If you want more levels, you can use
subreports.

 You can have several data-bands in one report. For instance, you can have two master data
bands on the same page – it allows you easily create “master-master” report.

 For illustration aforesaid we will show an instance of building some reports in FastReport and
ReportBuilder.

Example 1. Report with one level of data.

ReportBuilder FastReport

Example 2. Report with two level of data.

ReportBuilder FastReport

Example 3. Report with three data levels.

- 39 -

ReportBuilder FastReport

Example 4. Report of “master-detail-detail” type.

ReportBuilder FastReport

 The schema used in FastReport provides more flexibility in formation the reports,
as we see. Besides, FastReport allows to assign to the object “Report”data source. The object
TfrReport has some corresponding features for it: ReportType (rtSimple,rtMultiple) and DataSet:
TfrDataSet. If the ReportType = rtSimple (default), you may not assign data source to the band
master data - it will be taken from the DataSet feature of TfrReport object. Otherwise (ReportType =
rtMultiple) the report would be serially built so many times, as the number of notes in the data set,
connected up to the DataSet feature. It is convenient to use for printing several copies of the report, if
it is required to mark copies somehow (e.g. to write down on the first copy “Primary” and “For
acquaintance” on the rest copies).

 In addition to primary bands there are two auxiliary bands, not included into the classic
schema - Overlay and Child. These bands are borrowed from QuickReport. Overlay band is used for
printing background drawings (or other objects), which are output as the lowest layer; Child band
could be attached to any band, except for Page footer and be output after it. You can also attach your
Childs to the Child band. It is provided mainly for printing multisectional bands (i.e. bands consisting
of several sections). Each section is formed by one Child band and can have variable height,
depending on the height of the objects being in the section.

- 40 -

- 41 -

Simple report (list)
This is a simplest kind of report. For creating it, you should place «Master data» band on the

page, then place the required objects on it:

You also should connect «Master data» band to appropriate dataset (TfrDBDataset or
TfrUserDataset components). Example of this and other reports you can see in demo.

Master-detail report

For creating this report, place «Master data» and «Detail data» bands on the page, then place
objects with appropriate data on these bands. Tables that used in this report must be linked by
master-detail relationship.

Does not matter, in which order you place bands on the page - «Master data» band will be

printed first. If appropriate detail list is empty, master record will be skipped. If you don't want this,
turn on the option «Print if detail empty» of «Master data» band.

You can print new master data on new page - just turn on «Start new page» option of the

band.

Master-detail-subdetail report

For creating this report, place «Master data», «Detail data» and «Subdetail data» bands on the
page, then place objects with appropriate data on these bands. All principles are like to the master-
detail report.

Cross-tab report

This report is intended for printing table with variable number of columns. During report
building, all off-bounds columns will be printed on new page (like in MS Excel).

For creating this report, place «Master data» and «Cross data» bands on the page. Place object
in the cross of these bands. This object will be printed as the cell of cross-table.

- 42 -

 That is everything what is required for Base Report. You should only assign data sources for
“master data” and “cross data”. If “cross data” band crosses several ordinary bands, it is necessary to
assign data sources for each band. As you see you need at least two data sets, connected with each
other by master-detail relation.

 This kind of report can have variable height of data line. You have to enable Stretched option
in the “master data” band. The cross table will be generated in two passes: maximum line height is
defined in the first pass, data output - in the second one. The current FastReport version does not
provide building cross-tab reports with the complicated headers (as in Report Builder). It will be
possible in one of the next versions of FastReport.

Dynamic reports
 Band height in Dynamic Reports depends on the objects included into the bands. The objects
that can stretch depending on the length of the text inside them are the following: “Text”, “Text With
Shadow” and “RichText”. The “Stretched” flag must be enabled to allow these objects to stretch.
Besides you need to enable the same flag in the band, where the object is placed. When printing a
stretched band, FastReport reads the maximum height of the object, located in the band and set the
height of the band equal to the maximum height of the objects.

Stretched object and object with fixed height.

 If there are several stretched objects side by side, the lower boundaries of all objects (in spite
of their actual height) would coincide with the lower boundary of the band.

 And what would you do if the stretched objects need to be put under each other or if non-
stretched objects are put under stretched ones? Regions and StretchWithParent and ShiftWithParent
object options are used for it in the Reportbuilder. Objects, placed under each other, one or several of
them being stretched, need to be transferred to different bands.

 For all that Child Bands you have to set the “Stretched” flag. “ChildBand feature in the object
inspector serves for bands binding. In the above-mentioned example you must bind Master data with
Child1 and Child1 with Child2.

 It should be noted that all objects of FastReport have frames. By applying frames you can
easily obtain a table-like view. When an object is being stretched, the frame stretchs with it. It is very

- 43 -

convenient, because text objects in the ReportBuilder have no frame and you need to do the frame
using the “Shape” object. There are some difficulties in it - you have to align the frame and the
object. Besides you can’t always join the frames of adjacent objects when printing. The frame is
available in QuickReport but does not stretch together with the object when it stretches.

Broken bands

While printing a band FastReport checks, if there is enough space in the page and if this space
is not enough, it generates a new page and print the band on it. Moreover the space in the page is not
spent sparingly, especially in the cases when band height is big enough:

 In order to print so many text lines in the sheet as possible, the band must have not only the
“Stretched” option enabled, but also the “Broken” option enabled. Thereafter the Report would look
approximately like:

If the Report is multicolumn, the contents of the objects will be transferred to the next column:

 “Text”,”RoundRect” and “RichText” objects can break the contents. All other objects will be
taken out to the page, where enough free space is available.

- 44 -

Multicolumn report
 In an ordinary report the generation continues from the next page after completing the
previous one. In a multicolumn report it takes place at the same page but next to the first column, i.e.
in several adjacent columns. The number of columns is set in the page option. You can convert an
ordinary report into a multicolumn one only setting column count in the page options. “Column
header” and “column footer” bands provides each column with a header and a footer.

 Besides you can set column count separately for each data band in FR2.4. If we set Column
>1 feature for a band, data lines output will take place from right to left and from top to bottom. You
can also set column width and column gap. Bands display current sets in the designer with dash lines.

Report with title page
 It is easy to prepare multipage reports (i.e., the first page - title page, all the rest - other
information) with FR. In order to create/delete the page, use keys of the panel or context menu,
which appears after pressing the right button of the mouse at the page bookmark.

 In essence multipage reports represents several reports in one. Each page may include its own
report with its own band set and page relocation. Composite Reports are used to build similar reports
in QR and “SubReport” is used in ReportBuilder.

 Page contents could be put in the free space of the previous page, if the “PrintToPrevPage”
option (PrintToPrevPage feature in the inspector) is enabled in the page relocation.

Nested reports (subreports)

 Nested reports are reports with «Subreport» object placed in them. «Subreports» objects
are references to other reports, placed in other pages. During report building, instead of «Subreport»
object the appropriate report will be printed. When you insert a subreport object, you'll see that a new
page will be added to your report.

Subreport objects can be placed side-by-side. If you want to place subreport object one-

under-other, spread it on separate bands (for instance, you may use child bands to do this).

There are some limitations on using subreports:

• Do not use columns in subreports.
• Do not use ReportTitle, ReportSummary, PageHeader, PageFooter, ColumnXXX bands.
• Do not use broken bands.
• Do not use groups.

Master-Detail-Detail report

For creating this kind of report, place «Master data» and two «Detail data» bands on the page.
Link all bands to the appropriated datasets.

- 45 -

You can also create «Master-Detail-Detail-Detail», «Master-Master», «Master-Detail-

SubDetail-SubDetail» reports etc., except " Master-Detail-Master-Detail" reports. Such report must
be multi-page – you must move master-detail sets to separate pages.

Composite report

Composite reports are reports that includes several other reports. For creating composite

reports, you should use TfrCompositeReport object . Place it on the form and fill its «Reports»
property in run-time by references to other reports. Reports will be printed sequentially. If a reports
page have «Print to previous page» option, it will be printed at remained space at the last page of the
previous report.

Report with BLOb fields

If you want to show BLOb data in an object, insert a reference to appropriate field to object's
memo (or fill "DataField property in the Objects Inspector). If you want to show BLOb data from
non-DB source, you must do this in the OnBeforePrint event handler.

Report without bands

If you want to print a free-form report, containing data from only one record, you can not use
bands. All the objects placed directly on the page, will be printed at their places.

Report with groups

Groups are used for grouping data by some criteria. You can use any FR expression as a
group condition (usually use expressions based on DB fields). When this expression changes, FR
forms new group.

For creating this kind of report, place «Group header» and «Master data» bands on the page.

Assign appropriate dataset to «Master data» band. In the editor of «Group header» band type the
grouping expression. For example, to print customers list grouped by the first letter of customer
name, type the following expression: Copy([CustomerName], 1, 1), where [CustomerName] is
reference to appropriate DB field.

Report form Prepared report

- 46 -

There are one limitation on using groups: you can not use groups in subreports.

Note: dataset used for «Master data» band should be sorted on grouping condition. You can do this
by using queries with ORDER BY statement.

Report with charts

Let's assume that we have the following table:

Action Club $1000
Action Diver Supply $12000
Adventure Undersea $5000

To build a report that displays charts it is necessary to have one data band i.e. master

connected to appropriate TfrDataset. The band would have various rectangle objects placed on it. In
our case, it will be two objects with "Name" and "Amount" fields placed in it. These objects, for
instance, will be called Memo1 and Memo2. Place chart object in the band that will be shown after
the entire master data have being shown – in our case, it can be report summary band.

In the chart object editor select the type of chart and options on the display tab, on the data

tab enter the name of the memo to be used for the legends (Memo1 in our case), then enter the name
of the memo which has the numerical data you wish to chart (Memo2).

If there is a large number of records you may wish to set the “top ten” group value to a small

number. This will cut down the number of items shown in the chart. Size the chart rectangle to a
reasonable size for displaying the chart. Preview the report and see your results. This is a brief
summary, to display a chart you may have to use variables in some cases depending on the type of
values being supplied in the underlying data.

- 47 -

- 48 -

The designer

The designer

- 49 -

The designer
FastReport is supplied with its own report designer, which can be accessed at design time by

double clicking the TfrReport component. The designer allows quick and easy access to the report
design and also for live previewing of the report while in the Delphi IDE.

The designer includes dockable panels (toolbars), which may be moved and altered to suit
your particular needs. The position and visibility of all the panels are saved to the windows registry
when the designer is closed and their positions and visibility are restored the next time you open the
designer.

If you want the designer to be available at run-time, you need to include a TfrDesigner
component on a form within your project (which is visible to the TfrReport component you are
using). Alternatively, you can include the FR_Desgn unit in the uses clause of your unit . The
TfrDesigner component gives your end-user the capability to load, save, design and edit reports.

- 50 -

Using the keyboard
• Arrow keys – move to next object.
• Ctrl + Arrowkeys - moves selected object(s) in direction of arrow.
• Shift + Arrowkeys - increase or decrease dimension of selected object(s) in arrow direction.
• Enter - brings up editor of selected object.
• Del - delete selected object.
• Insert - show “Insert data field” toolbar.
• Ctrl + Enter - brings up memo editor of selected object.
• Ctrl + 1..9 - sets frame thickness of selected object.
• Ctrl + Z - undo last action.
• Ctrl + Y - redo cancelled action.
• Ctrl + G - toggles grid on/off.
• Ctrl + B, Ctrl + I, Ctrl + U - toggle bold/italic/underline font attributes.
• Ctrl + F - turn object’s framing off.
• Ctrl + D - turn object’s framing on.
• Ctrl + X - cut to clipboard.
• Ctrl + V - paste from clipboard.
• Ctrl + C - copy to clipboard.
• Ctrl + A - select all objects on Page.
• Ctrl + N - create new empty report.
• Ctrl + O - open report file.
• Ctrl + S - save report file.
• Ctrl + P - preview report.

Using the mouse
• Left click - in Page window selects object; in visual component palette selects object to insert –

after selection the LeftClick over the Page window inserts a new object.
• Right click – brings up the context menu for the selected object.
• Double click – brings up the default editor of the selected object. Double click over the free space

on the Page brings up the Page-option dialog, where you may choose the Page options i.e.
margins, size etc.

• Shift + left click – toggles object’s selection.
• Ctrl + left click – draws a selection rectangle. All objects that fit in this rectangle will be selected

after you release the mouse key.
• To scale several selected objects, drag the red square on the right-bottom corner of the object’s

group.

- 51 -

Report options
To set Report Options choose “File|Report options…” from designer’s menu.

The list at the top of the dialog box lists all available printers on the system. If there is no
printer installed on your system, you can select the “Virtual printer” option, which allows to use any
paper dimension, but there is no possibility for a printout. There is only the possibility to work with
the report in the designer mode, and also to view the preview of the report. You may also use the
virtual printer option for designing a report for a printer, that is not installed on your PC (for instance,
you want to design a report for A3 paper, but your printer allows only A4).

If “Select when report loaded” option is checked, the printer information is stored with the
report and when this report is re-loaded, the stored printer will automatically be selected. If that
printer is not found on the system, then the default windows printer will be selected.

The “Two pass report” option must be checked if you need to use “total pages” function in
the report, i.e. print “Page xx from yy”. If you’re using the TOTALPAGES function, but you have
forgotten to turn on this option, you’ll get a zero instead of number of total pages in your report.
Another benefit of making reports “two-pass” is to do some calculations during the first pass and
show the results on the final pass. One of these calculations – show group totals in the group header –
can be found in the demo reports.

After seleting any printer, the Page window in the report designer shows the available
printable area for the Page size and printer selected.

- 52 -

Page options
To set the page options for the current page of report, choose “File|Page options…” in

designer’s menu, or double-click on an empty space on the page. The dialog has four tabs.

The “Paper” tab

You can select the paper format from the drop-down list of paper formats supported by the
current printer. If the current printer supports custom paper sizes and you select “custom” from the
list, you will be able to enter the width and height of the custom size. Any other choice uses preset
sizes. You may also choose the orientation for the Page and set "Unlimited height" option – it
increases the height of a page (in case if you want more space to place a lot of bands on the page).

Note Not all printer drivers or printers support custom paper sizes, (for example, printer

driver “HP LaserJet 6L” does not support page dimensions less than 76 * 127 mm; printer driver “HP
LaserJet 4L” does not support a custom size page at all).

The “Paper source” tab

The “Margins” tab

- 53 -

On the “Margins” page of the dialog you may select whether or not to use margins and the

size of the margins. If the “Don’t use” option is selected, no printable area border will be shown in
the designer’s Page window, and all page contents will be printed correctly on any printer. But
object’s sizes will not be the same on different printers.

If you leave this option unchecked, and all margin settings are zero, the pageborder will
reflect the maximum printable area for the selected printer. You may find some chopping when you
switch between reports designed for one printer to another, particularly between ink-jet and dot
matrix. Ink-jet printers usually have a smaller printable area than a dot matrix due to the way they
feed the paper.

If margins are set to non-zero values, a border will be shown in the report designer’s page
window (using a hash line style). If you use dot matrix printers, pay close attention to the printable
area: some dot matrix printers will not print if the object to be printed overruns the printable area,
others will produce pages with the over-run printed on them. This obviously produces weird looking
reports. In this case, you should set margins manually.

The “Options” tab

On the “Options” page of the dialog, you may set many other options for the page. You may
set the number of columns across the page width and the space between them. If “Print on previous
page” flag set to true this will allow a new page to start printing on the unused space of the previous
page.

- 54 -

Designer options
To set the default options for the report designer choose “Tools|Options…” menu command.

Here you can set grid size, report measurement units: pixels, millimeters and inches. Grid size

18 pixels corresponds to 5mm.

- 55 -

You can also control how to paint objects when moving or resizing them: show wire-frames

or full-repaint them.

The “page position” group allows you to choose the page position (this is needed by the

Object Inspector).

If “Coloured Buttons” is turned off, then all Buttons are painted black and white.

The “Editing after insertion” option lays down the default action after inserting objects, if the

default editor for the object appears after insertion or not. If inserting a large amount of empty
rectangles turn this option off.

“Show band titles” allows you to turn band titles (tabs) off if you want more space on the

page when designing.

"Localized property names" allows localization for Object Inspector.

Snap to grid snaps objects to the nearest grid point when moving them.

On the “Editor” tab you can select the font of the editor window. You can select between

fixed setting and object’s settings.

- 56 -

The Object Inspector
The Object Inspector allows you to manipulate object’s properties.

The Inspector works just like the Delphi-Object Inspector. Like the other toolbars, it may be
shown or it may be hidden. To show the Object inspector, select the “Tools|ToolBars|Object
Inspector” menu item. To shrink the Object Inspector, double-click on its title bar; double-click on
the title bar while it is shrunken leads to re-expandig the Object Inspector.

- 57 -

The “Insert data fields” window
 You can quickly insert a DB field into the report using this dialog window. You can run it
from the menu "Service|Toolbar|Insert a DB field" or by pressing “Insert” key.
The window contains two lists: table (query) list at the top of the window and fields list at the
bottom. The field is inserted using the drag&drop method. You need to select a necessary field
with mouse from the bottom list and holding down the mouse button, move it to the report page.
When you release the mouse button, there should appear a new object “Text” with a link to the
selected DB field.

If the dialog is using often, it’s useful to locate it under the object inspector or over it. In this
case double-click the dialog window title and so, the window will be minimized and the inspector
window will be maximized; Double-Clicking again will make a reverse, so it’ll restore the standard
widow state and the size of inspector window will be decreased.

- 58 -

The Data dictionary
The “Data dictionary” window can be chose from the "File|Data dictionary..." menu. The

window looks like a notebook with three bookmarks: "Variables", "Data from DB" and "Data
sources for bands". The Data dictionary is saved in file with the report form, but there is a possibility
to save it in separate file with .FRD extension and read data to the existing report when necessary. To
do it, use the commands from the designer’s menu "File|Open" and "File|Save As." and choose the
file type “The Data dictionary FastReport” in the appeared standard dialog windows of opening and
saving.

"Variables" tab

This tab is used to work with variables list.
The variables list is located in the left part of the window. As shown at the picture, the list

structure contains 2 levels. It consists of categories, there maybe one or some variables in each
category. The categories are needed just for visual variables ordering, but it is not inserted to the
report.

When creating a new report the list is empty, and you can fill it by using the buttons under the
list:

 - adds a new category and - adds a new variable to the current category. These
actions may be run using keyboard keys: “Insert” key adds a new variable, “Ctrl+Insert” adds a new
category. For other icons: - edits the name of variable or category (keyboard analog – “Enter”
key), deletes a variable or a category (“Delete” key). - calls the variables list’s editor, where
it’s shown as a strings list. Here you can insert multiple variables from the clipboard, move variables
from one category to other.

- 59 -

After the variables list is defined, you should set a value for each variable. To do it, you need
to choose a variable in the list on the left and a value in the list on the right, using the mouse.

All data sources are shown in the list on the right (nonvisual dbaware-components,
component-children TDataSet), are available at this moment, so the names of its fields are also
available. In design-time all datasets, located in opened modules (units) will be available. In run-time
all datasets, located in created forms or data modules (TDataModule) will be available. You can
select a value “System variables” from the list box on the right, and then there will be a possibility to
set one of the following values to the variable:
• page – number of the current page, it’s equal the Page# function (see the description of internal

functions);
• date – date of the beginning of creating a report, equal Date;
• time – time of the beginning of creating a report, equal Time;
• string, LineThrough#, column, CurrentLine#, Total pages – see the description of internal

functions

An expression may be the value of the variable – check the “Choose a variable” checkbox and
check “Expression" checkbox at the bottom of the window. So the text field for expression become
active. For visual show of expression press this button .

The variables insertion window for highlighted example will be shown like this:

- 60 -

"Field aliases" tab

 On the left at this bookmark, there is a list of all available dataset – tables, requests, which are
on all the forms of the project.

This dialog window is used to remove unnecessary data from the list and name it with more
detailed names (pseudonyms). It’s necessary because the report, as a rule, contains the data just from
one-two requests or tables. FastReport, by default, offers to insert the fields from all the data sources,
which it determines on all the project’s forms. In large projects there are tens (or hundreds) tables
and requests.
 To use a dataset, you should move it from the left list to the right one. You can do it using
drag&drop method, or double-click the necessary dataset, or using the buttons in the middle part of
the window.
 To remove the field from the list, choose a necessary dataset and its field and check the
“Remove the field from the list” box. Checking the box again restores the including of the field to the
list. The command is also available by pressing the “Space” key.
 To set a pseudonym, choose a necessary элемент and enter a new name in the “Pseudonym”
field. If a pseudonym is not required – clear all the field’s data. This command is also available by
pressing the “Enter” key.
 As you see from the picture, creating pseudonyms for data sources and its fields make its use
when building a report easier. Compare the dialog window for inserting fields to the report before
applying pseudonyms and after it:

- 61 -

Without pseudonyms Using pseudonyms

"Band datasources" tab

 This tab shows a list of all available data sources for bands - components TfrDBDataSet,
TfrUserDataSet, located on all the forms of the project. Like the previous dialog, you can use more
detailed names (pseudonyms). The result is shown in the dialog with choice of data source for data-
band:

- 62 -

- 63 -

The Expression builder

The expression builder window can be run from the text editor, by pressing on the
toolbar. You can also choose it from some dialog windows, where it’s necessary to set an expression
(ex., in editor of band group conditions, group header).

The window contains a field for entering an expression and buttons to call dialog windows for
variables insertion, DB fields, functions, and buttons for quick arithmetical and logical operations
signs insertion.

"Insert data field" dialog

 The dialog helps to choose a DB field to insert to the expression. On the left, there is a list of
all available DB tables. On the right – the fields list in the selected table. To insert a field to the
expression, choose a field and press “OK” button, or double-click the field.

"Insert variable" dialog

- 64 -

 The dialog helps to choose a variable to insert to the expression. On the left, there is a
category list. On the right – variables list in the selected category. To insert a variable to the
expression, choose a variable and press “OK”, or double-click it.

"Insert function" dialog

 You can choose a function to insert to the expression in this dialog. While the function is
selected, you can see a short description of the function and the list of its arguments in the bottom of
the window. If the function has arguments, you’ll be asked to fill it after pressing “OK”:

- 65 -

- 66 -

Toolbars

The "Standard" toolbar

- 67 -

Icon

Name Description

New report Create new empty report.

Open report Open existing report from file with FRF extention. Keyboard
shortcut - Ctrl+O.

Save report

Save the report to file with FRF extention. Keyboard shortcut -
Ctrl+S.

Preview

Run report and show it in the preview window. Keyboard shortcut -
Ctrl+P.

Cut Cut selected objects to the internal clipboard. Keyboard shortcut –
Ctrl+X.

Copy Copy selected objects to the internal keyboard. Keyboard shortcut -
Ctrl+C.

Paste Paste objects from internal clipboard. Keyboard shortcut - Ctrl+V.

Undo Undo last operation(s). Number of undo levels – up to 100. Keyboard
shortcut - Ctrl+Z.

Redo Redo last operation that was undone. Keyboard shortcut - Ctrl+Y.

Bring to front

Bring to front selected objects.

Send to back Send to back selected objects.

Select all Select all objects on the page. Keyboard shortcut - Ctrl+A.

New page Create a new empty page.

Delete page

Delete current page.

Page options

Show page options dialog.

Show grid Show grid on the page. The size of the grid can be adjusted in the
designer options dialog. Keyboard shortcut - Ctrl+G.

Align to grid When moving or resizing objects, its coordinates or sizes will
changes according to grid size.

Fit to grid Change the position and size of selected objects so they fit to the grid
cells.

Help Show the context help on selected element.

Close

Close Close the designer window.

The "Text" toolbar

Icon

Name Description

Font name Drop-down list of all fonts installed in your system. Double-click on
this control, and you will see a standard “Select font” dialog.

Font size Drop-down list of available font sizes for the selected font. If you
want to enter a size manually, click on this control, enter appropriate
size and press Enter.

Bold Toggle “bold” font attribute. Keyboard shortcut - Ctrl+B.

Italic Toggle “italic” font attribute. Keyboard shortcut - Ctrl+I.

Underline Toggle “underline” font attribute. Keyboard shortcut - Ctrl+U.

Text color Select text color from drop-down color palette.

Conditional
highlightning

Change conditional highlightning.

Left align

Align text to the left of the object.

Center

Align text to the center of the object’s width.

Right align

Align text to the right of the object.

Width align

Fit text to both sides, left and right.

Top align

Align text to the top of the object.

Middle align

Align text to the middle of object’s height.

Bottom align Align text to the bottom of the object.

Text orientation Change the text orientation (normal/90 degrees).

- 68 -

The "Rectangle" toolbar

Icon

Name Description

Top line Turn on/off the top frame line.

Left line Turn on/off the left frame line.

Bottom line Turn on/off the bottom frame line.

Right line Turn on/off the right frame line.

All lines Turn on all frame lines.

No lines Turn off all frame lines.

Fill color Select the object’s fill color from the drop-down palette.

Line color Select the line color from the drop-down palette.

Line style Select the line style from the drop-down list.

 Line width Select the line width from the drop-down list.

The "Alignment " toolbar

Icon

Description

 Aligns the selected components to the left edge of the component first selected. (Not
applicable for single components.)

 Moves the selected components horizontally until their centers are aligned with the
component first selected. (Not applicable for single components.)

 Aligns the selected component(s) to the center of the window along a horizontal line.

 Horizontally aligns three or more selected components so that the middle components
are equidistantly spaced between the outer components.

 Aligns the selected components to the right edge of the component first selected. (Not
applicable for single components.)

- 69 -

 Aligns the selected components to the top edge of the component first selected. (Not
applicable for single components.)

 Moves the selected components vertically until their centers are aligned with component
first selected. (Not applicable for single components.)

 Aligns the selected component(s) to the center of the form along a vertical line.

 Vertically aligns three or more selected components so that the middle components are
equidistantly spaced between the outer components.

 Aligns the selected components to the bottom edge of the component first selected. (Not
applicable for single components.)

- 70 -

End-user features

Introduction

The dialogue forms

Data access components

The TfrDataStorage component

Built-in language

- 71 -

Introduction
 As were written in the “Introduction” chapter, the main report building stages are:

In the reports, which are built-in the project, all this stages can be made with Delphi services.
So, data access is realized with using dbaware-components: TTable, Tquery and so like (as a rule,
there is a common database for all the project and it’s just possible to access to its tables); for
parameters request you can use dialog forms, created for the project making process; processing
stage is realized with using event handlers.

In spite of efficiency, this method (applying in the most report generators), is not universal. A
little change in any of highlighted stages requires re-compiling all the project. But, if there are an
information systems with a big amount of reports, this will follow the cluttering of the project with
the dialog forms. So, this stage is not efficient in the projects, where create new kinds of reports and
modify old reports.

History of the report generators (such as QuickReport, ReportBuilder, FastReport) goes step-
by-step to become an independent tool from the project. So, at first the reports are modified in run-
time. After, the end-user can determine data sources himself for report building. ReportBuilder
version 4.0 or higher, helps you to make a data processing for the time of report building with using
Pascal-relative language. FastReport has components for dialog form building.

And so, FastReport offers you to:
• Create new and modify existing reports;
• Create data sources, which a report will use to build;
• Create a dialog forms for report parameters request by user;
• Process report data and manage the dialog windows’ work, using built-in Pascal-relative language.

As you see, it helps to create project-independent reports. Components’ ideology is based on
the Delphi’s ideology.

- 72 -

The dialogue forms
The development of dialogue forms uses the same designer as the report page forms. This button
on the designer toolbar will create a new dialogue form. The Objects toolbar will automatically
change to reflect the type of form that is currently active: either a report page form or a dialogue
form.

Fig. The ‘Objects’ toolbar when a ‘Report Page’ form is active.

Fig. The ‘Objects’ toolbar when a ‘Dialogue’ form is active.

When a dialogue form becomes active, the controls of the designer will change from the report page
style controls to the dialogue style controls. These controls can then be placed on the form to create
a dialogue box:

Note that the process of creating a report dialogue form is very similar to how a standard dialog form
is created in the Delphi IDE. Several dialogue forms can be created in each report. These dialogue
forms will be executed in the order of their creation until all of the dialogue forms are executed and
accepted by pressing the OK button. Then the main report will be prepared and executed.

- 73 -

Dialogue Form Controls

Icon Name Description

 Label Static text control.

 Edit Single-line edit control.

 Memo Multi-line edit control.

 Button Single command button control.

 CheckBox Boolean decision button control.

 RadioButton Set of mutually exclusive choices button control.

 ListBox Fixed size, scrollable list control.

 ComboBox Drop down listbox control associated with an edit control.

It is important to note that all dialogue controls in FastReport descend from the TfrStdControl class
and have a the following common set of properties and methods:

Property Default Description

Color clBtnFace Background color of the object.

Enabled True Enable or disable the object.

Font - Specifies the font associated with the text of the object.

Height - Specifies the vertical size of the object.

Left - Specifies the coordinate of the left edge of the object.

Name - Specifies the name of the object as will be referenced in code.

OnClick -
Occurs when the user clicks on the object – similar to the
Delphi OnClick event. Specific code instructions can be placed
here using FastReport Pascal.

Restrictions - Set of flags associated with the control to restrict the user from
modifying the object (moving, deleting, editing, etc.).

Top - Specifies the coordinate of the top edge of the object.

Visible True Determines whether the object will appear on the screen.

Width - Specifies the horizontal size of the object.

Next we will take an in-depth look at each control.

 Label
This control is used to display static text, which is text that will never be changed by the user. Its
normal purpose is to display explanatory text about other controls or large amounts of information to
the user.

- 74 -

The Label control has the following properties (along with the above common properties):

Property Default Description

Alignment taLeftJustify Controls the horizontal placement of the text within the label

AutoSize True Determines whether the size of the label automatically resizes
to accommodate the text.

Caption - Specifies the text string that the label will display.

WordWrap False
Specifies whether the label text will wrap to a new line when it
is too long for the width of the label. The AutoSize property
must be set to ‘False’ when WordWrap is ‘True’.

 Edit
This control is used to display and modify a single-line text string that is input from the keyboard.

The control has the following properties:

Property Default Description

ReadOnly False Determines whether the user can change the text of the edit
control.

Text - Contains the display text represented as a string, which will be
shown in the control by default.

 Memo
This control is used to display and modify a multi-line text string that is input from the keyboard.

- 75 -

The control has the following properties:

Property Default Description

Lines - Contains the individual lines of display text represented as
strings. These lines are shown in the control by default.

ReadOnly False Determines whether the user can change the text of the memo
control.

 Button
This control is used to represent a command push button control.

The control has the following properties:

Property Default Description
Caption - Contains the text that is displayed within the button.

ModalResult mrNone Determines whether and how the button closes its (modal)
parent dialogue form and what result will be returned.

Setting the ModalResult property is an easy way to make clicking the button close a modal dialogue
form. When a button is clicked, the ModalResult property of its parent form is set to the same value
as the button's ModalResult property. Usually a “ОК” button will have a ModalResult = mrOk, and a
“Cancel” button will be ModalResult = mrCancel.

 CheckBox
This control is used to represent a Boolean style option button. The user can check the box to select
the option, or uncheck it to deselect the option. Examples would be Yes/No, On/Off, True/False, etc.

- 76 -

The control has the following properties:

Property Default Description

Alignment taRightJustif
y Controls the position of the check box's caption.

Caption - Contains the text that is displayed with the checkbox.

Checked False Indicates whether the check box is selected.

 RadioButton
This control is used to represent a set of mutually exclusive choices as buttons. That is, only one
button in a set of buttons can be selected at any one time. A click on a button in the set of buttons
will select that button and deselect all the other buttons in the set.

The control has the following properties:

Property Default Description

Alignment taRightJustif
y Controls the position of the radio button’s caption.

Caption - Contains the text that is displayed with the radio button

Checked False Indicates whether the radio button is selected.

 ListBox
This control is used to display a scrollable list of items that the user can select from.

- 77 -

The control has the following properties:

Property Default Description

Items - Contains the individual items of display text represented as
strings. These items are shown in the control by default.

 ComboBox
This control is used to display a drop-down, scrollable list of items that the user can select from
without taking up the space that is required for a listbox control. Also with the associated edit
control; it is possible to allow the user to enter items that are not present in the drop-down list.

The control has the following properties:

Property Default Description

Items -
Contains the individual items of display text represented as
strings displayed in the drop-down list region of the combo
box.

Style csDropDown Determines the display style of the combo box.

Text - Contains the selected text in the edit region of the control.

These are three ComboBox Style property values:
• csDropDown - Creates a drop-down list with an editable edit control. The user can manually enter

a text item that is not contained within the list. All items are strings of the same height;
• csDropDownList - Creates a drop-down list with a non-editable edit box. The user cannot

manually enter a text item and the only items available to display in the edit control will be the
items already contained within the list. All items are strings of the same height.

• csLookup - The strings in the list are represented in two parts: String1, String2. The Items
property, as displayed in the drop-down list, will be shown with the first part of the string: String1.
When one of the String1 values is chosen from the list, this value contained in String2 will be
displayed to the edit control. For example, populating the control’s Item property with strings like;

- 78 -

“January, 1”, “February, 2”, etc; could represent the months of the year. The selected value,
String 2, that will shown in the edit control is available through the Text property.

The dialogue form also has a set of properties. These properties can be shown in the object inspector
by clicking the mouse on an empty place on the form that is not occupied by controls.

Property Default Description
BorderStyle bsDialog The type of the dialogue form, fixed size or sizeable window.

Caption - The text display in the title bar of the window.

Color clBtnFace Specifies the background color of the window.

Height - Specifies the vertical size of the window.

Left - Specifies the coordinate of the left edge of the window.

OnActivate - Occurs after initialization of all elements of the window.

Position poScreenCenter Represents the size and placement of the window.

Top - Specifies the Y coordinate of the top edge of the window.

Type ptDialog Specifies the type of form, a dialogue form or report page form.

Width - Specifies the horizontal size of the window.

The OnActivate property closely corresponds with the same event in other Delphi forms. It is
executed after all of the controls that are on the dialogue form are initialized and just before the form
is ready to be displayed on the screen. Use the OnActivate property for initializing values in the
form’s controls. For example, the Items property string list of a ListBox control can be populated
with values at this time.

- 79 -

Passing the information to the Report
 It is frequently required to transfer values, entered in controls, to the report. There are two
ways of doing this

1. Use of variables
2. Direct Calls

Use of variables
 Variables can be used to transfer the information from a control to the report. For example,
when it is necessary to display text from an Edit control in header of the report.

This can be done in the OnClick event handler of the OK button:

begin
 TitleText := Edit1.Text;
end

In the header of the report, it is necessary to put the "Text" object with contents [TitleText] as shown
below:

Direct call
 In many cases, it is easier to use direct call to control element for passing the entered values
in the report. In this case, intermediate variables are not required:

- 80 -

Data access components
Majority of reports, as a rule, access data from the database (DB). For accessing such data,

Delphi provides effective mechanisms, which are used in FastReport. These Data Access
Components are TTable and TQuery, which can be used as the source of data for the report. In
general, it is possible to use any component based on TDataSet for this purpose.

Except for a data access, which are created during design-time, FastReport allows the creation
of new components at run-time. In FastReport, the process of creating components for data access is
similar to that used when designing a Database application in Delphi environment. A required data
access component is placed on the form, and its properties are customized in the Object Inspector.

- 81 -

Description of FastReport DB-aware components
We shall discuss the use of components for data access with the help of BDE. These

components are connected to the component TfrBDEComponents from the palette FastReport,
in the project and these components are TfrBDELookupComboBox, TfrBDETable, TfrBDEQuery,
TfrBDEDataBase.

The purpose of these components is similar to the Database components TDBLookupComboBox,
TTable, TQuery and TDataBase

Icon Name Description

 TfrBDELookupComboBox Drop-down list of lookup items for filling in fields that
require data from another dataset.

 TfrBDETable To access data from a Table

 TfrBDEQuery To access data from a SQL Query.

 TfrBDEDataBase To connect with a Database

Let's consider each component.

- 82 -

 TfrBDELookupComboBox
TfrBDELookupComboBox is used to provide the user with a convenient drop-down list of

lookup items for filling in fields that require data from another dataset.

The element has the following properties:

Property

Default
value

Description

KeyField - Field - identifier of chosen value.
ListField - Field whose values are displayed in the lookup control
ListSource - Data source for the data displayed in the lookup control
Text - Currently selected lookup value

For connecting the lookup ComboBox with another dataset it is necessary to fill in values of
three properties: KeyField, ListField and ListSource. Selected value can be accessed through Text
property.

 TfrBDETable
 This component is used to access the data from a Table.

The component has the following properties:

Property Default
value

Description

Active False Determines, whether the table is active.
DatabaseName - alias or a pseudonym for the database.
Fields - The list of accessible fields.
Filter - Only the records matching this condition will be active, enabled

or visible.
IndexName - Name of a secondary index.
MasterFields - The fields connected to a master-data set.
MasterSource - Master Dataset.
TableName - Name of Table .

- 83 -

 The above properties are similar to properties of Delphi TTable component. For connecting
the component to Table, it is enough to fill in the properties DatabaseName and TableName. Table is
opened by setting the Active property of the above TfrBDETable to True.

 Properties Fields and MasterFields are adjusted with the help of editors. For this purpose, it is
necessary to press the button in the Object Inspector.

The editor of property Fields allows us to choose the fields which will be accessible during

the table look-up.

To add fields to the list, click on the "Add fields" button. A window will appear which will
show all the fields, from there select the fields and click "OK" button. For selecting multiple fields or
group of fields, click the mouse on the first field of group, then while keeping the "Shift" key pressed
select the last required field. For deleting any of the selected fields from a list, choose the field to be
deleted and press the "Delete" button.

To add a lookup-field, use the "Add lookup" button.
Following example demonstrates how to set up the lookup-fields.

Let's assume that there are two database tables: the table "Orders" with fields N, Date,

ClientID and Amount and a table "Clients" with fields ID, Name and Address. Table "Orders"
contains the information on the orders (number, order date, identifier of the client who has made the
order and sum of the order). Table "Clients" contains the information on clients (identifier of the
client, full name, address).

To create an elementary report on the table "Orders" like
Order Number - Date - Name of the client - Sum,

it is required to link both tables on fields ClientID - > ID. This is done by creating a lookup-
field, which one is added to the table "Orders" and represents the link on a field Name of the table
"Clients".

Dialog box for creation of a lookup-field is accessible from the field editor.

- 84 -

For creating a lookup-field it is necessary to set its Field Name and Field Type, and also the
size (in case Field Type is of the type String). Further, it is necessary to fill in the following fields:
• Primary key field - field in the source dataset, which acts as the link on a field from a lookup-

dataset. In our example it will be the ClientID field.
• Datasource - lookup-data set.
• Lookup key – the key field in the lookup-dataset. In our example, it is the ID field.
• It is necessary to substitute a resultant field - field of a lookup-set, which one in an source data

set. In our example it is a field Name.

After that, in the table "Orders", there is a dummy field with a given name, which contains

ClientID field. You can access to this field, as any other common field, but it is ReadOnly.

In the "MasterFields" property editor, you can link master and detail datasets visually, just
like in Delphi IDE.

When the data sets are connected with each by Master-Detail, at moving on master data set

the detail data set is filtering. So it consist only the records that have relation to master data set. For
link fields of data sets select fields from list at left side (detail dataset), then select field from list at
right side (master dataset), and click "Add" button. Thus the link fields moved to the lower list. To
clear lower list push "Clear" button. The linked fields should have the identical type and to be

- 85 -

primary key.

 TfrBDEQuery
 This component is used for performing of SQL searches on the Database.

The component has the following properties:

Property

Default
value

Description

Active False Determines, whether the search is active.
DatabaseName - alias or a pseudonym for the database.
DataSource - Master - set.
Fields - The list of accessible fields.
Filter - Only the records matching this condition will be active, enabled

or visible.
Params - The list of parameters in the SQL statement
SQL - SQL statement

Properties Active, DatabaseName, Fields and Filter are similar to the properties of component
TfrBDETable as described above. The property SQL has an editor for giving the SQL Text.

Property Params also has an editor which is accessible when the SQL text contains parameters.

- 86 -

In this dialog box, it is possible to assign a type to each parameter, and to configure the
source of the parameter value i.e either from a master-dataset or by assigning it a particular value. In
case the parameter value is taken from a master-dataset, the dataset should contain the field with a
name which should be same as the name of the parameter. Besides this field should be in the list of
accessible fields (see fields editor). Thus it is optional to indicate the type of parameter.

 TfrBDEDataBase
 This component connects to a database. It is similar to the TDataBase component in Delphi.

Property

Default
value

Description

AliasName - alias or a pseudonym, which will be used in the project, for the
database

Connected False If True, makes the connection active
DatabaseName - Name which will be added in the list of alias
DriverName - Name of the driver providing connection to the Database.
LoginPrompt True Determines whether to prompt the user for Password while

connecting to the Database.
Params - Connection Parameters

This component allows us to connect to the database (usually it is used to connect to the

server control system of databases).

As well as in Delphi, you must set either AliasName or DriverName property. To set

connection parameters, select “Params” property in Object Inspector and run property editor.

- 87 -

 When "LoginPrompt" property is true, database login dialog will appear, when you connect to
the SQL server. If you provide user name and password in database parameters, as shown below, you
can make this property false.

SERVER NAME=Path_to_gdb_file
USER NAME=SYSDBA
PASSWORD=masterkey

- 88 -

Building Reports
 Let’s have a look at how simple reports with data access components are built. We will use
the DBDEMOS demonstration tables from Delphi as the data source.

 First we will make a new project for our experiments. To do that create a new project
containing a form and put TfrReport, TfrDesigner, TfrDialogControls and TfrBDEComponents
components on the form.

For the “Design” button define the following event handler:

procedure TForm1.Button1Click(Sender: TObject);
begin
 frReport1.DesignReport;
end;

Then compile and run the project. That’s all you need to make an end-user report designer.

When you click the “Design” button the designer with an empty report is loaded. Let’s have a

look at how simple reports are made in this environment.

SIMPLE “TABULAR” TYPE REPORT
This report will show data from one table in a DB. To create the report follow these steps:
• Add a dialog form to the report. This form will be used to hold the data access component.

• Place a TfrBDETable component onto the form and change its settings as described below:

DatabaseName = 'DBDEMOS', TableName = 'Customer.db'.
• Switch to the report form and click “Insert fields into the report” button in the Wizard toolbar

in the designer. In the open dialog box choose the required fields and click the OK button.

- 89 -

Now the report form will look something like this:

To view the report click the Preview button on the toolbar.

Report with parameters

Let’s look at more complex report building where the user will have to enter parameters in
the dialog box before building the report. Follow these steps:
• Add a dialog form to the report.
• Place Query, Label, Edit and Button components onto the dialog form.

• Change the Query component’s settings as shown below: DatabaseName = 'DBDEMOS', SQL =

'Select * from Customer.db where CustNo > :B1'.
• Open the Params property editor of the Query component and change its parameter’s properties.

• Switch to the report form and click the “Insert fields into the report” button in the Wizard

toolbar of the designer. In the open dialog box choose the required fields and click ОК.

- 90 -

When the report is built you will be prompted for a customer number by the dialog box. Once
you have entered the number and pressed OK the report will be built. All customers with numbers
exceeding the value you entered will be printed.

- 91 -

The TfrDataStorage component

Component TfrDataStorage is intended to create databases, tables and queries in run-
time mode, setup of a list of accessible fields, creation of lookup-fields, master-detail relationship.
This component allows to execute the same activity, as in Delphi IDE. The information is saved
together with the report form.

 At the present time, component is outdated. Use TfrDialogControls +
TfrBDEComponents instead.

When component is connected, "Data Manager" and "Parameters dialog" added to the list of
Designer Tools.

First allows to work with the data - to determine the databases, tables and queries and edit

them. The second tool is intended for editing the parameters of the query. All databases, tables and
queries created with this tool are in datamodule of "ReportData", which one is accessible in run-time
mode. For each table or query there is a data source for FastReport with the same name, as well as for
the table, but signed underlines ahead.

The data manager supports either the BDE, Interbase Express or Microsoft ActiveX Data

Objects (ADO). IBX&ADO doesn't require the use of the BDE. To activate the appropriate DB
engine, uncomment the appropriate line in the FR.INC file.

CONNECTING TO A DATABASE

Connecting to a database is necessary if you using ADO or IBX data components. Before
creating any tables or queries, you should create database first.

To create new database, start the tool "Data Manager". In the appeared window click on
"New database" button. After that the dialog box "Database parameters" will open. If you using ADO

- 92 -

or IBX, set the name of database component and choose appropriate DB file. If you using BDE, set
the name of database component, set alias name, which you want to add to the alias list, and choose
appropriate DB driver.

You can also set DB parameters, such as user name and password for connection to SQL-

based DBs. Note: different drivers uses different parameter names. For example, to connect to
Interbase SQL server through BDE native driver, use the following parameters:

SERVER NAME=Path to your *.gdb file
USER NAME=SYSDBA
PASSWORD=masterkey

To connect to Interbase SQL server through IBX, use the following parameters:

user_name=SYSDBA
password=masterkey

 When "Login prompt" checkbox is turned on, database login dialog will appears when you
connecting to the SQL server. If you also set user name and password in database parameters, you
can turn this option off. This automatically connected to DB.

OPENING A TABLE

For creation of the new table start the tool "Data Manager". In the appeared window click on
"New table" button. After that the dialog box "Select table" will open. You can choose necessary
table from available DB's or load it directly from the file (only if using local Paradox or DBase tables
with BDE). After the table is selected, the dialog box "Table Properties" will open. Here it is possible
to set a table name (by default is offered "Table" + first free number). TDataSource and
TfrDBDataSet created together with the table. The name of TfrDBDataSet, as well as for the table,
but signed underlines ahead.

- 93 -

Also in this window you can execute fields editor, select index for the table (if table have

secondary indexes), set filter expression. To set Master dataset for the table you can select necessary
data set from a "Master" list, and in line "Field Master" select fields from a Master dataset (or,
clicked in a right part of line to call dialog box for visual linkage of fields).

GENERATING A QUERY

For creation of the new query start the tool "Date Manager". In the appeared window click on
"New query" button. After that the dialog box "Query Properties" will open. Here it is possible to set
a query name (by default is offered "Query" + first free number). TDataSource and TfrDBDataSet
created together with the query. The name of TfrDBDataSet, as well as for the query, but signed
underlines ahead.

- 94 -

The "Alias" drop-down list contains path of the database tables, on which the query is built.

Here there can be a value from a drop-down list or path to the catalog with the tables. It is a field it is
possible to leave empty, in this case alias or path it is necessary to indicate in the text of the query.
After that it necessary to type the text of the inquiry in a field "SQL Text". If in the text of the query
consist the parameters (i.e. identifiers signed ":" in a start of a name), each parameter is necessary for
describing in the editor of parameters.

Also in this window you can execute fields editor and set Master dataset. To set the Master
dataset for the query you can select from a list "Master" the necessary data set. Thus text of the query
should be contained parameters - names of fields from a Master-source. Besides each parameter
should have an option "Assign from a Master-source".

At clicking on "OK" button the regularity of the query is checked up. If in the text of the
query or in the description of parameters there is an error, the applicable warning will be issued and
the editing of properties of the query will proceed.

FIELDS EDITOR

In this editor is possible to fill in a list of accessible fields of the table or query. If the list is
empty, all fields will be accessible.

- 95 -

To add fields to the list click on "Add fields" button. From the appeared window select fields
and click "OK" button. For selection of group of fields click the mouse on the first field of group,
then at the pushed button "Shift" - on last. To add a lookup-field, use the "Add lookup" button. See
"Creating lookup field".

For deleting selected fields from a list use "Delete" button.

CREATING LOOKUP FIELDS

For what the lookup-fields necessary, we shall explains on an example.
Let's allow, there are two database tables: the table "Orders" with fields N, Date, ClientID, Amount
and table "Clients" with fields ID, Name, Address. Table "Orders" is contained the information on
the orders (number, date, identifier of the client who has made the order, and sum of the order). Table
"Clients" is contained the information on clients (identifier of the client, full name, address). To
create the elementary report on the table "Orders" like Number of the order - Date - Name of the
client - Sum, it is required to link both tables on fields ClientID - > ID. This problem is decided by
creation of a lookup-field, which one is added to the table "Orders" and represents the link on a field
Name of the table "Clients".

Dialog box of creation of a lookup-field is accessible from the editor of fields. For creation of
a lookup-field it is necessary to set it name and type, and also the size (in case is selected the string
type). Further it is necessary to fill in following fields:

- 96 -

• Primary key field - field in an source dataset, which one as the link on a field from a lookup-
dataset. In our example it will be by a field ClientID.

• Datasource - lookup-data set.
• Lookup key - field in a lookup-dataset being key. In our example it is a field ID.
• It is necessary to substitute a resultant field - field of a lookup-set, which one in an source data

set. In our example it is a field Name.

After that in the table "Orders" there is a dummy field with a given name, which one contains
decryption of a field ClientID. You can access to this field, as to a common field, but only for
reading.

QUERY PARAMETERS EDITOR

In this dialog box is possible to assign the type to each parameter, and also to point, whence
to take an parameter value: from a master-dataset, from dialog box, or at once to assign particular
value. In a case, when parameter takes from a master-dataset, the dataset should contain a field with a
name conterminous to a name of parameter. Besides it is a field should be in a list of accessible fields
(see fields editor). Thus it is optional to indicate the type of parameter.

JOINING DATA

In this dialog box is possible visually to link fields master and detail of data sets.

- 97 -

When the data sets are connected with each by Master-Detail, at moving on master data set
the detail data set is filtering. So it consist only the records that have relation to master data set. For
link fields of data sets select fields from list at left side (detail dataset), then select field from list at
right side (master dataset), and click "Add" button. Thus the link fields moved to the lower list. To
clear lower list push "Clear" button. The linked fields should have the identical type and to be
primary key.

PARAMETERS DIALOG

If the report contains as the data source one or several queries with parameters, which one
have an option "Request value" (see editor of query parameters), before creating the report on a
screen will be show dialog box of parameters input values. In dialog box all parameters will be
collected, which one meet in all queries indispensable for construction of the report.

By default for input the value of parameter used command element "Edit box", which one has
an description - name of parameter. If some parameters, the command elements are injected the self
under the self. It is inconvenient - because parameter name is abbreviated English word. In this case
it is possible to take advantage of the Dialogs designer.

The dialog box will be accessible, if the report is true in it requires. The empty report or
report which is not inclusive of the links to the queries with parameters, does not show dialog box.

DESIGNER OF PARAMETERS DIALOG

The Dialogs designer is very good means for change appearance of Dialog box of parameters
input values. It allows to arrange control objects of dialog box in the necessary order, to change the
descriptions (by default used parameters name). Besides the designer allows to replace the type of a
command element for parameters input values - by default command element is "Edit box".

The designer does not allow to add new objects or to remove existing. It is possible only to
change their position and sizes, to set properties (for example, parameters font). All operations are
make by the mouse. The mouse works like in designer of report form.

To set properties of object, make a double click by the mouse on a them. In the appeared

dialog box it is possible to set the text, which one will be showing in object. The conversation also
can be called, if some one-type objects are selected. If the selected object - command element, than in
properties dialog box becomes accessible the switch "Object type".

- 98 -

It is possible to select three types:

• Edit box - represents line, in which one it is possible to type any text. If in a field "Text" of dialog
box something is typed, this value will be imaged in edit box of input dialog box.

• The list - represents a drop-down list. The useful thing, if is necessary to submit the user selection
from several values. If the line of a list contains a character ";", in a list the part of line up to a
semicolon will be show, and by selection of this value actually in parameter the part of line after
a semicolon will be show. In such a way conveniently, for example to select month: at usage of a
list with lines such as "January; 1", "February; 2" in a list the titles of months will be show, and in
parameter numbers will get.

• Lookup the list - is convenient for using for selection of value from the reference book (database

tables with a primary key field and field inclusive a title). For setup lookup it is necessary to
select the table, its primary key field, which one will be substituted in parameter, and the field,
which one will be show in drop down list.

It is possible to change the sizes of the form - it is necessary only to allow, that after execute

below of dialog box will be added button "OK".

- 99 -

Built-in language
FastReport has a built-in Pascal-like language interpreter. This interpreter is a powerful

means of writing language-independent (Delphi or C++Builder) scripts which are used for building
reports.

The language used in the interpreter is a Pascal dialect with the following capabilities:

• operators: assignment operator; conditional statements, loop statements and unconditional jump:
if...then...else, while...do, repeat...until, for..to..do, goto;

• statement parentheses begin...end;
• variables without type, arrays;
• references to properties and methods of FastReport objects through dot notation.

 Compared to Object Pascal this language is much simplified. The following simplifications
are used:
• all variables are of Variant type; there are no type definitions for variables;
• all variables are global, there are no local variables;
• there are no data types such as class, record, enumeration type etc.;
• you cannot write your own procedures or functions;
• there are no loop breaking operators (break, continue);
• the number of arguments passed to a procedure or a function cannot exceed 3;
• due to the fact that variables have no data type, data type control is unavailable; this should be

taken into account when writing logical expressions;
• arrays can only be one-dimensional.

Despite these considerable simplifications, the interpreter allows you to perform rather
complex data processing. From the script you have access to all the methods and properties of report
objects, as well as to database table fields. In the script you can declare variables and arrays
accessible throughout the whole report. Capabilities of the built-in language can be demonstrated by
the fact that such a difficult task as printing group totals in the group header (because the totals are
calculated at the bottom of the group) for FastReport is elementary.

Scripts and objects

Each object can have one or more code blocks. Script editing is done in the text editor
window (to see the script you have to click the button at the top of the window). The script runs
each time before printing an object. (The script is attached to the OnBeforePrint property of the
object).

- 100 -

Not only objects can have scripts. Bands and report pages are scriptable too. To call the band
script you must open the OnBeforePrint property editor of the band (either from the Object inspector
or by selecting the band and pressing Ctrl+Enter). To call the script of the report page you must open
the OnBeforePrint property editor of the page (to do that you can click on an empty place on the page
and call the editor from the Object inspector). Both Dialog Forms and Report Pages have scripts
attached to their OnActivate property. All other object’s scripts can be accessed from their Memo
property or by pressing Ctrl+Enter.

Code writing
In scripts, you can use properties and methods of the report objects, database table fields and

various constants. Also you can create variables and arrays accessible throughout the whole report.
You can use procedures and functions as well.

Using variables

There is no need to specify the “type” of variables, they all are variant. You can use Latin
letters, digits and underline symbols in variable names. Variables from scripts can be used in objects
and the variables from the list of variables can be used in scripts. Script variables are stored in
TfrVariables object which can be accessed through the frVariables global variable.
This is an example of using an intermediate variable:

begin
 Cust := [CustomerData.RepQuery."CustNo"];
 if FinalPass then
 TotalSales := Arr[Cust] else

end;

 TotalSales := 0;

In this example we create a variable Cust and set it equal to the database table field value.

You can also call variables defined in the data dictionary, system variables and user variables.

In this case the variables’ names might contain symbols that are not normally allowed by syntax rules
(take Page# system variable for example). To call such variables you must use square brackets:

begin
 a := [Page#];
end

Referencing database fields

You can use references to database tables in your scripts. Here is the syntax of such a
reference:
[FormName.TalbeName.”FieldName”]

The full path is used when the table and the report are located on different forms (or data

module). If the components are on the same form you can address them as
[TableName."FieldName"].

You can just write ["FieldName"] if you address the table on which the band you are using is

based. For example if you have master data band, which is connected to Customer.db table through a
data source, you can refer to the fields of this table throughout the report using just the short path.
Using the full path will not slow you down - FastReport stores database field names in cache.

- 101 -

Arrays

Apart from variables you can also create arrays in your scripts. The arrays can only be one-
dimensional but you can use their elements in the way that they will be treated as two-dimensional.

Example of using an array:

begin
 MyArr[0] := 'a'; MyArr[1] := 'b'; MyArr[3] := 'd';
 MyArr[2] := MyArr[0] + MyArr[1] + 'c' + MyArr[3];
end;

Actually the array elements’ values are stored in the frVariables list in
Arr_array_name_index format. I.e. in the above example the contents of frVariables will be:

Arr_MyArr_0 := 'a'
Arr_MyArr_1 := 'b'
Arr_MyArr_2 := 'abcd'
Arr_MyArr_3 := 'd'

Constants

You can use constants in your scripts. A simple example is using numeric, string and logical
constants:

begin
 a := 0;
 b := 'abcd';
 c := True;
 d := 'That''s all!';
end;

Pay attention to using single quotes inside string constants – like in Pascal, they have to be
duplicated: d := 'That''s all!'.

Apart from simple constants you can use such constants as color names, font type names etc.

Below is the list of available constants:

• colors: clWhite, clBlack etc. – all standard colors + system colors;
• dialog box response constants: mrNone, mrOk, mrCancel;
• system: CRLF, Null;
• font style types: fsBold, fsItalic, fsUnderline;
• object frames: frftNone, frftRight, frftBottom, frftLeft, frftTop;
• text alignment in a“Text” object: frtaLeft, frtaRight, frtaCenter, frtaVertical, frtaMiddle,

frtaDown;
• band aligning: baNone, baLeft, baRight, baCenter, baWidth, baBottom.

Besides these there are constants for add-in objects, for example, csCheck for
"CheckBoxObject" objects. Anything you can see in a drop-down property list box in the Object
inspector can be used as a constant in scripts.

Referencing objects

You can reference a report’s object’s properties and methods in your scripts. Report objects
are visual objects, control objects, bands, report pages and reports themselves. To reference an object

- 102 -

dot notation is used, for example: Memo1.Text. To reference intrinsic properties and methods dot
notation is not necessary.

Properties that can be referenced are shown in the Object inspector. Some combined
properties like those of Font can be referenced by using Font.Name, Font.Size etc.:

begin
 Memo1.Font.Name := 'Courier New';
 Memo1.Font.Size := 10;
 Memo1.Font.Color := clRed;
 Memo1.Font.Style := fsBold + fsItalic
end;

Properties such as TStrings (Memo, SQL, Items etc.) can be referenced by their index:

if Memo1.Lines[1] = 'a' then
 Memo1.Lines[1] := 'b'

Such properties can also be referenced using Add, Delete, Clear and Count:

if Memo1.Lines.Count > 10 then
 Mem
else

o1.Lines.Delete(10)

begin
 Memo1.Lines.Clear;
 Memo1.Lines.Add('a');
end;

A Full list of object properties and methods can be found in the “Object properties and
methods” paragraph. Make a note that referencing a non-existent method or property will not cause
an error message, so be careful when writing code.

Using procedures and functions

Scripts can contain procedures and functions calls. A peculiar property of the interpreter, or to
be more precise the parser responsible for procedure/function processing, is that procedures and
functions can not have more that 3 arguments. Scripts can use both built-in procedures and external
procedures, defined in the project. The list of built-in procedures and functions is in the “Built-in
procedures and functions” paragraph.
 Note. When referencing a procedure or function there must not be a space between the
procedure name and the opening bracket.

Objects modification

In your scripts you can make any modifications to objects, like changing size, color, contents,
etc. You must remember that in a single pass report you cannot modify objects which have already
been processed. That is if you try to change the contents of an object in the report title from an
object lying on a report summary band there will be no changes. However, you will be able to make
such a modification if you make a two-pass report.

It works the same way in multi-page reports. You can reference any object by its name

(names within a report are unique). But only non-processed objects can be modified. If you still need
to modify an object which has already been processed you will have to make a two-pass report.

- 103 -

Built-in functions

Aggregate functions

Aggregate functions can be used in ReportSummary, PageFooter, MasterFooter, DetailFooter,
SubdetailFooter, GroupFooter and CrossFooter bands.

• Sum(<expression> [, band] [,1]). Calculates the sum of the values passed in <expression> for the

band row given. If the band parameter is not set, sum defaults to all of the data values (on the
bands MasterData, DetailData and SubdetailData); otherwise a sum refers only to data on the
named band. If the “1” parameter is used, the sum includes non-visible objects too. Example:

Sum([Part total], Band1);
Sum([[Part total] + [Part price]]);
Sum([Part total], Band1, 1).
• Avg, Min, Max. Syntax is analogous to the Sum function. Function Avg calculates an arithmetic

average, function Min returns minimum and function Max returns maximum value from a row.
• Count(<band>). Returns a count of data-rows. Example: Count(Band1).

String functions
• Str(<value>). Converts number given in value to a string.
• Copy(<string>, <from>, <count>). Returns a substring of <string> with length <count>

characters , starting at <from>, (same as Delphi function).
• If(<expression>, <string1>, <string2>). Returns string <string1>, if expression expression is

true; otherwise returns <string2>.
• FormatFloat(<formatstr>, <value>). Converts a numericaly significant value in string, making

use of the mask in formatstr. The possible values of <formatstr> are described in the Delphi
documentation’s, «Formatting strings» topic.

• FormatDateTime(<formatstr>, <value>). Converts a date/time value to a string, making use of
the mask in <formatstr>. The possible values of <formatstr> are as described in the Delphi
documentation’s, «Formatting strings» topic.

• StrToDate(<value>). Converts the string <value> to a date.
• StrToTime(<value>). Converts the string <value> to a time.
• UpperCase(<value>). Converts the string <value> to all upper case.
• LowerCase(<value>). Converts the string <value> to all lower case.
•
• NameCase(<value>). Converts the first character of string <value> to upper case and the

remaining characters to lower case.
• Length(<string>). Returns the length of <string>.
• Trim(<string>). Trims (removes) all spaces at the beginning and end of <string> and returns the

result.
• Pos(<substring>, <string>). Returns the position of <substring> in the given <string>.

Arithmetic functions
• Int(<value>). Returns the whole part of the number <value>.
• Frac(<value>). Returns the fractional part of the number <value>.
• Round(<value>). Returns rounded number.
• value1 Mod value2. Returns the remainder resulting from dividing <value1> by <value2>.
• MinNum(<value1>, <value2>). Returns the smaller of the two values.
• MaxNum(<value1>, <value2>). Return the greater of the two values.

- 104 -

Other functions
• Input(<caption> [,<default>]). Shows a dialog window with the heading <caption> and an edit

box. If “default” parameter is set, puts this string into the edit box. After user clicks OK, returns
the input string.

• Date. Returns current system date.
• Time. Returns current system time.
• Line#. Returns the current Line number; counting begins at the start of each new group. For

example:
 Master data

1. Detail data
2. Detail data
3. Detail data

 Master data
1. Detail data
2. Detail data

• LineThrough#. Returns the current Line number; counting begins at the start of the report. For
example:

 Master data
1. Detail data
2. Detail data
3. Detail data

 Master data
4. Detail data
5. Detail data

• Column#. Returns the current column number in a cross-tab report.
• Page#. Returns the current page number.
• TotalPages. Returns the total number of pages in a completed report. To use of this function a

report must be a two pass report.
DayOf(<date>). Returns day (1..31) of given date. •

•
•

•

•
•
•
•
•

MonthOf(<date>). Returns month of given date.
YearOf(<date>). Returns year of given date.

• MessageBox(<text>, <caption>, <buttons_and_icons>). Shows a message dialog window with
text, caption and buttons. Returns a value that corresponds to the user’s selection (mrOk,
mrCancel, mrYes, mrNo). Use the following values for the <buttons_and_icons> parameter:

Buttons Icon
mb_Ok
mb_OkCancel
mb_YesNo
mb_YesNoCancel

mb_IconError
mb_IconQuestion
mb_IconInformation
mb_IconWarning

Procedures and functions that can be used during building a report

CurY. Returns the current Y position where the next band will be printed. You also can assign a
value to CurY – it moves the current position accordingly. To convert pixels to millimeters and
back, use the following ratio: 18 pixels = 5mm.
FreeSpace.Return space remaining in the page in pixels.
FinalPass. Returns true, if a report is two-pass and is now running the final pass.
PageHeight. Returns page height in pixels minus the height of the page footer band.
PageWidth. Return page width in pixels.
StopReport. Terminates report building.

- 105 -

NewPage. Starts a new page. •
•
•

NewColumn. Starts a new column in a multi-column report.
ShowBand(<band>). Shows band named <band>.

- 106 -

Properties and methods of objects
 All visual objects of the report are descendants of the class TfrView. The following properties
and methods may be addressed from a script:

Property Type

Description

BandAlign Integer Specifies the alignment of objects within a band.
Possible values are: baNone, baLeft, baRight, baCenter,
baWidth, baBottom.

Enabled Boolean Determines whether or not an object can respond to an event.
Possible values: True or False.

FillColor Integer The background color of an object. The color can be specified
by a constant clXXX.

FrameColor Integer Color of a frame of object.
FrameStyle Integer Specifies the style of a border. Possible values are: psSolid,

psDash, psDot, psDashDot, psDashDotDot, psDouble.
FrameTyp Integer Type of border of an object - a set of constants frftTop,

frftBottom, frftLeft, frftRight.
FrameWidth Double Width of a frame.
Height Integer Height of the selected object.
Left Integer Determines the horizontal coordinate of the left edge of an

object relative to the form in pixels.
Memo String The text in memo of the selected object. The property can be

accessed by reference to its index, for example: Memo[1].
Memo.Count Integer Returns the number of lines in a memo.
Name String Name of the selected object.
Stretched Boolean Whether the object is stretched to assume the size and shape of

the control or retains its natural dimensions.
Top Integer Determines the y coordinate of the top left corner of an object

relative to its parent.
Visible Boolean Determines whether or not the object appears on the screen.

Possible values: True or False.
Width Integer Determines the width (horizontal size) of an object

Methods:

Method Parameters

Description

Hide - Makes an object invisible by setting the visible property to
False.

Memo.Add String Adds a new line to a string list in a memo.
Memo.Clear - Deletes all text from an object.
Memo.Delete Integer Removes a line specified with the given index parameter.
Show - Makes an object visible by setting the visible property to True.

- 107 -

Standard objects

Object "Text" (TfrMemoView)
 In addition to the general properties and methods described above, an object has its own
properties:

Property Type

Description

Alignment Integer Specifies the alignment of text within an object.
Possible values are: frtaLeft, frtaRight, frtaCenter, frtaVertical,
frtaMiddle, frtaDown.

AutoWidth Boolean Determines if the object automatically resizes to the width of
the text in object.

CharSpacing Integer Determines the space between characters.
Font.Name String Allows particular fonts to be specified to control the attributes

of the text of an object.
Font.Size Integer The size of a font in pixels.
Font.Style Integer Determines whether the font has any of the attributes: bold,

italic, underlined. Possible values: fsBold, fsItalic, fsUnderline.
Font.Color Integer Determines the color of the font.
GapX Integer Horizontal distance between an object’s border and the text

within that object.
GapY Integer Vertical distance between an object’s border and the text within

that object.
HideZeros Boolean If set to True then zero values of variables are ignored. Possible

value: True; False.
LineSpacing Integer Spacing between lines of the text.
Suppress Boolean Specifies whether or not repeat values are suppressed. Possible

values: True; False.
TextOnly Boolean Specifies whether or not variables are processed. If Textonly is

set to True then variables are not processed. Possible values:
True; False.

WordBreak Boolean When a word wraps at the right margin, Wordbreak specifies
whether wrapping occurs at the end of a syllable. Possible
values: True; False (Russian words only).

WordWrap Boolean Determines if text wraps at the right margin so that is fits into
the object. Possible values: True; False.

Object "Band" (TfrBandView)

Property Type

Description

Breaked Boolean Band breaks off. Possible values: True; False.
ChildBand String Band is derived from another band.
ColumnGap Integer Horizontal distance between columns within an object.
Columns Integer Number of columns in band.
ColumnWidth Integer Width of a column.
Condition String Specifies conditions for grouping. Applies to band group

header.
DataSource String Determines where the object obtains the data it is to display.

- 108 -

EOF Boolean Determines whether or not the end of a dataset has been
reached. Possible values: True; False.

FormNewPage Boolean Forces printing on a new page after printing this band and all
its detailed bands. Possible values: True; False.

Master String Specifies the band which is used when grouping data.
OnFirstPage Boolean Print on the first page. Possible values: True; False.
OnLastPage Boolean Print on the last page. Possible values: True; False.
PrintChildIfInvisible Boolean Specifies whether or not to print child bands if the child’s

parent band is invisible. Possible values: True; False.
PrintIfSubsetEmpty Boolean Specifies whether or not to print a band if its child’s band is

empty. Possible values: True; False.
RepeatHeader Boolean Specifies whether or not to repeat this band on every page.

Possible values: True; False.

Methods:

Method Parameters

Description

First - Establishes the datasource for a band based on the first record.
Next - Establishes the datasource for a band based on the next record.
Prior - Establishes the datasource for a band based on the previous

record.

Object "Picture" (TfrPictureView)

Property Type

Description

BlobType Integer Specifies the type of image contained within a blob field.
Possible values: btBMP, btJPG, btICO, btWMF.

Center Boolean Specifies whether or not to centre an image within an object.
Possible value: True; False.

DataField String Specifies the field of the table that contains the image.
KeepAspect Boolean Specifies whether or not to retain the relative proportions of

an image when it is resized. Possible values: true; False.

Methods:

Method Parameters

Description

LoadFromFile String Loads a picture from the file. If file does’nt exists, clears the
picture.

- 109 -

Add-in objects

Object "Bar code" (TfrBarcodeView)

Property Type

Description

DataField String The name of the field that contains the data.

Object "CheckBox" (TfrCheckBoxView)

Property Type

Description

CheckColor Integer Specifies the color of the cross when the checkbox. is checked
CheckStyle Integer Specifies the style of the checkbox. Possible values: csCross,

csCheck.
DataField String The name of the field that contains the data.

Objects "RichText", "RichText 2.0" (TfrRichView, TfrRXRichView)

Property Type

Description

GapX Integer Horizontal distance between an object’s border and the text
within that object.

GapY Integer Vertical distance between an object’s border and the text within
that object.

TextOnly Boolean Specifies whether or not variables are processed. If Textonly is
set to True then variables are not processed. Possible values:
True; False.

DataField String The name of the blob field that contains the data.

Object "Rectangle with a shadow" (TfrRoundRectView)
 Since this object is a descendant of the object "Text", it possesses the same set of properties
and methods as the parent together with the following:

Property Type

Description

BeginColor Integer Specifies the initial color used in the gradient.
EndColor Integer Specifies the final color used in the gradient.
Gradient Boolean Specifies whether or not to use gradient flooding. Possible

values: True; False.
RoundRect Boolean Specifies whether the corners of the rectangle are rounded or not.

Possible values: True; False.
RoundSize Integer If the corners of the rectangle are rounded this property specifies

the degree of rounding.
ShadowColor Integer Color of a shadow.
ShadowWidth Integer Width of a shadow.
Style Integer If the gradient effect is used then this property specifies the style

of the gradient. Possible values: gsVertical, gsHorizontal,
gsElliptic, gsRectangle, gsHorizCenter, gsVertCenter.

- 110 -

Object "Shape" (TfrShapeView)

Property Type

Description

Shape Integer Determines the visual shape of an object.
Possible values: skRectangle, skRoundRectangle, skEllipse,
skTriangle, skDiagonal1, skDiagonal2.

- 111 -

Dialog controls
 All dialog controls are descendants of the class TfrStdControl and possess the following set
of properties and methods:

Property Type

Description

Color Integer The background color of an object. The color can be specified
by a constant clXXX.

Enabled Boolean Determines whether or not an object can respond to an event.
Possible values: True or False.

Font.Name String Allows particular fonts to be specified to control the attributes
of the text of an object.

Font.Size Integer The size of a font in pixels.
Font.Style Integer Determines whether the font has any of the attributes: bold,

italic, underlined. Possible values: fsBold, fsItalic, fsUnderline.
Font.Color Integer Determines the color of the font.
Height Integer Height of object.
Left Integer Determines the horizontal coordinate of the left edge of an

object relative to the form in pixels.
Name String Name of object.
Top Integer Determines the y coordinate of the top left corner of an object

relative to its parent.
Visible Boolean Determines whether or not the object appears on the screen.

Possible values: True or False.
Width Integer Determines the width (horizontal size) of an object

Methods:

Method Parameters

Description

Hide - Makes an object invisible by setting the visible property to
False.

SetFocus - Gives the input focus to the control.
Show - Makes an object visible by setting the visible property to True.

Object "Label"

Property Type

Description

Alignment Integer Specifies the alignment of a line of text within an object.
Possible values: taLeftJustify, taRightJustify, taCenter.

AutoSize Boolean Determines if the object automatically resizes to the width of
the label text. Possible values: True; False.

Caption String The caption is the character string that is displayed on the label.
WordWrap Boolean Specifies if text wraps onto another line so that it fits onto the

label. If set to true, then AutoSize should be set to False.
Possible values: True; False.

Object "Edit"

- 112 -

Property Type

Description

ReadOnly Boolean Specifies whether or not a user can change the contents of an
edit control. If readonly is set to true then the value cannot be
changed. Possible values: True; False.

Text String Specifies the text that appears within the edit box.

Object "Memo"

Property Type

Description

Lines String Specifies the text lines in a memo object. Individual lines can
be accessed by reference to a line’s index
e.g. Memo1. Lines [0].

Lines.Count Integer The number of lines of text in a memo
ReadOnly Boolean Specifies whether or not a user can change the contents of an

memo control. If readonly is set to true then the text cannot be
changed. Possible values: True; False.

Text String Specifies the text that appears in the memo object. It consists of
all the line concatenated as one line (with symbols CR+LF for
carriage return and line feed).

Methods:

Method Parameters

Description

Lines.Add String Adds a new line to a string list in a memo.
Lines.Clear - Deletes all text from an object.
Lines.Delete Integer Removes a line specified with the given index parameter.

Object "Button"

Property Type

Description

Caption String The caption property is the text that appears on the button.
ModalResult Integer When the user chooses to close a dialog box by pressing a

button the button click sets ModalResult to close the box. The
value assigned to ModalResult becomes the return value of the
ShowModal function call which displayed the dialog box.
Possible values: mrNone, mrOk, mrCancel.

Object "CheckBox"

Property Type

Description

Alignment Integer Specifies the alignment of text relative to the box.
Possible values: taLeftJustify, taRightJustify.

- 113 -

Caption String The caption is the character string that is displayed on the
checkbox.

Checked Boolean Specifies whether a checkbox is checked (True) or unchecked
(False). Possible values: True; False.

Object "RadioButton"

Property Type

Description

Alignment Integer Specifies the alignment of text relative to the switch.
Possible values: taLeftJustify, taRightJustify.

Caption String The caption is the character string that is displayed on the
checkbox.

Checked Boolean Specifies whether a radiobutton is checked (True) or unchecked
(False). Possible values: True; False.

Object "ListBox"

Property Type

Description

Items String The items array holds the lines that will be displayed in the
listbox. Individual lines in the listbox can be accessed by
reference to the index of the item e.g. ListBox1. Items [0].

ItemIndex Integer Index of the selected line.
Items.Count Integer The number of lines in the array displayed by the listbox.

Methods:

Method Parameters

Description

Items.Add String Adds a new line to the string list displayed in a listbox.
Items.Clear - Deletes all lines from the string list displayed in the listbox.
Items.Delete Integer Removes a line from the string list displayed in the listbox. The

line to be deleted is specified with the given index parameter.
Object "ComboBox"

Property Type

Description

Items String The Items array holds the lines that will be displayed in the
combobox. Individual lines in the combobox can be accessed
by reference to the index of the item e.g.
ComboBox1. Items [0].

ItemIndex Integer Index of the selected line.
Items.Count Integer The number of lines in the array displayed by the combobox.
Style Integer The style property determines how a combo box displays its

items. These can be as a dropdown list with an edit box in
which text may be entered (csDropdown), as a dropdown list
with no edit box so the item cannot be edited
(csDropwdownlist) or as a list from another source (csLookup).
Possible values: csDropDown, csDropDownList, csLookup.

Text String Specifies the text that appears selected in the combobox.

- 114 -

Methods:

Method Parameters

Description

Items.Add String Adds a new line to a string list displayed in a combobox.
Items.Clear - Deletes all lines from the string list displayed in the combobox.
Items.Delete Integer Removes a line from the string list displayed in the combobox.

The line to be deleted is specified with the given index
parameter.

- 115 -

Data access components

Object "BDELookupComboBox"
 The object is successor of TfrStdControl and has the same base set of properties and methods
plus the properties:

Property Type

Description

KeyField String Field - identifier of chosen value.
ListField String Field whose values are displayed in the list.
ListSource String Source of the data.
Text String The chosen value.

Object "BDETable"

Property Type

Description

Active Boolean Determines, whether the table is active.
DatabaseName String Name of DB’s alias.
Fields Variant The list of accessible fields. Property can be accessed by index

- name of a field: a: = Table1. Fields ['Customer'].
FieldCount Integer Number of fields in a dataset.
Filter String Expression for records filtering.
IndexName String Name of a secondary index.
MasterFields String The fields used for joining with a master dataset.
MasterSource String Master dataset.
TableName String Name of DB table.
EOF Boolean True if the end of a set of records is achieved.
RecordCount Integer Number of records in the table.

Methods:

Method Parameters

Description

Open - Opens the table. It is similar to substitution Active: = True.
Close - Closes the table. It is similar to substitution Active: = False.
First - Establishes the index on the first record in the table.
Last - Establishes the index on last record in the table.
Next - Establishes the index on the following record in the table.
Prior - Establishes the index on the previous record in the table.

Object "BDEQuery"

Property Type

Description

Active Boolean Determines, whether the query is active.
DatabaseName String Name of DB’s alias.
DataSource String Master dataset.

- 116 -

Fields Variant The list of accessible fields. Property can be accessed by index
- a name of a field: a: = Query1. Fields ['Customer'].

FieldCount Integer Number of fields in a dataset.
Filter String Expression for records filtering.
SQL String The text of query. Property can be accessed by index: Query1.

SQL [0].
SQL.Count Integer Number of lines in the query’s text..
EOF Boolean True if the end of a set of records is achieved.
RecordCount Integer Number of records in the table.

Methods: the same, as in component BDETable and some more:

Method Parameters

Description

SQL.Add String Adds a line.
SQL.Clear - Clears lines.
SQL.Delete Integer Deletes a line with the given index.

Object "BDEDataBase"

Property Type

Description

AliasName String Alias whose adjustments are used for connecting to DB.
Connected Boolean If True, the connection is active.
DatabaseName String Name, which will be added into the list of aliases.
DriverName String Name of the driver providing connection to DB.
LoginPrompt Boolean Defines, whether it is necessary to request user to enter DB’s

password.
Params String Parameters of connection. Property can be accessed by index:

DataBase1. Params [0].
Params.Count Integer Number of parameters’ lines.

Methods:

Method Parameters

Description

Params.Add String Adds a line.
Params.Clear - Clears lines.
Params.Delete Integer Deletes a line with the given index.

- 117 -

Using the interpreter
Here are some examples of using the interpreter:

1. To highlight sum of an order: white, if sum is less than 2000; green, if sum is between 2000 and

10000; red, if sum is greater than 10000, type the following script in object with sum:

if [Summa] < 2000 then
 Fi lC rent
else if [Summa] < 10000 then

l olor := clTranspa

 Fi
else

llColor := clGreen

 FillColor := clRed

[Summa] is your variable or field with actual sum of order. You can use numeric constants for
choosing color:

FillColor := 128 + 128*256 + 128*65536 //(gray color)

2. To show only data rows with order’s sum greater than 2000, use the following code in the script

of appropriate data band (you can show its memo editor by pressing Ctrl+Enter key):

if [Summa] > 2000 then
 Visible := 1 else
 Visible := 0

3. Use FreeSpace function to determine how much free space is on current page. If there is not

enough space, call NewPage procedure to insert "hard page break" and start new page.

if FreeSpace * 5/18 < 30 then NewPage

4. Use CurY property to move current position. For instance, to put Report summary band to the

bottom of page, use this code in the report summary script:

CurY := PageHeight - Height

- 118 -

Programming

Event hadlers

Variables

Expanding the functionality

- 119 -

Event handlers
Often data needs to be extracted from other sources, which are not databases (for example,

from file, array, etc.). There is TfrUserDataset component for these purposes. It generates following
events: OnFirst, OnNext, OnCheckEOF. Besides, OnGetValue and OnBeforePrint event handlers of
TfrReport component have to be implemented.

OnGetValue event handler is invoked each time there is a variable in the text of object and it
is necessary to get its value. Internal handler of the component can handle the variable if it has
assigned value. Otherwise it is necessary to attach external handler, for example:

procedure TForm1.Doc1GetValue(const ParName: string; var ParValue: Variant);
begin
 if ParName = 'Var1' then
 ParValue := '1'
 else if ParName = 'Var2' then
 ParValue := 2
end;

OnBeforePrint event handler is invoked before plotting any object. Usually it is used to load

contents of memo-field or picture from DB into the object. An example of the handler is showed
below:

procedure TForm1.Doc1BeforePrint(Memo: TStringList; View: TView);
begin
 if Memo.Count > 0 then
 if Memo[0] = '[Memo]' then
 Memo.Assign(Table1Memo)
 else if (Memo[0] = '[Picture]') and (View is TPictureView) then
 (View as TPictureView).Picture.Assign(Table1Picture);
end;

OnUserFunction event handler is invoked when variable or expression containing function

call is found in the text of the object. The function can have up to 3 parameters of any type. An
example of the handler:

procedure TForm1.Doc1UserFunction(const name: string; p1, p2, p3: Variant;
 var val: Variant);
var
 d:
begin

Double;

 if name <> 'MONEYTOSTR' then Exit;
 d := frParser.Calc(p1);
 val := MyMoneyToStr(d);
end;

TfrUserDataset component located on the graphic palette of FastReport components is used to
navigate through the data sources, which are not DB (for example, through arrays). It generates
OnFirst, OnNext, and OnCheckEOF events; obviously the way of using them is clear.

Other events of TfrReport object

Apart from the events described in the above paragraph FastReport has a number of other
event handlers:

- 120 -

• OnBeginBand – event handler is called before the data section is formed. Reference to the section
whose data is to be processed is passed to the handler as an argument.

• OnBeginColumn – event handler is called when reports with alternate number of columns are
formed. Band parameter shows for which section the multi-column part is being built at the
moment. The event handler can be useful for switching data sources (the multi-column part can
have a title, first-level data, second-level data, etc., for which different data sources are used).

• OnBeginDoc – event handler is called before the report is formed.
• OnBeginPage – event handler is called before the page is formed.
• OnEndBand – the event is generated right after the data section is formed.
• OnEndDoc – event handler is called after the report is formed.
• OnEndPage – event handler is called after the page is formed.
• OnManualBuild – event handler allows building reports manually (by coding). If no handlers are

assigned, the report is built as usually. If the report is built manually you can change the section
output order.

• OnPrintColumn – the event is called when cross-tab report columns are formed. The column index
and its default width are passed to the event handler. Altering the width you can get cross-tab
reports with different column widths. In this case you will also have to alter the width of the
object(s) in the table cells.

• OnProgress – event handler is called for indicating current task progress (report building, printing,
exporting). This handler can use your own indicator.

- 121 -

Variables

You can use variables in FastReport objects and expressions. What does this mean and what purpose
do they serve?

Suppose one has a table for employees with field names N, Name1, Name2 and Name3.
Sometimes it is difficult to later remember what such field names stand for, even for the database
developer. Instead, one can assign conventional names (Table Number, Last Name, First Name,
Middle Name) to the database fields and insert them into the objects. In addition, variables can be
assigned not only to database field names but also to mathematical expressions. An example could
include a running sum of a database field, a rounded value, a date, time value. More examples of
using variables in any report can be found in the demo version of the program.

To work with a list of variables one must open a dialog box from the menu "File|Data
Dictionary...".

The list of variables is in the left part of the screen. As one can see on the picture, the list has

a two-level structure: It consists of categories and each of them can have one or a few variables.
Categories are only used for visual grouping of the variables and are not inserted into reports. A more
detailed description of this technique can be seen in “Designer” paragraph.

However, FastReport cannot work alone with the variables described in the data dictionary. If
an unknown identifier is met in the code, FastReport successively checks if:
• There is such a variable in the data dictionary;
• It is a database field;
• It is one of special values of Page#, Date, Time or other types;
• It is one of variables from frVariables list;
• It is an object property;
• It is a constant from frConsts list.

- 122 -

Also, if a component has a turned on OnGetValue event handling, it is called before all the
checks. If the handler returns a value, the variable is considered initialized and no further checks are
made.

This approach gives much flexibility in choosing a way of passing a value to the report. It is
recommended:

• When one passes static value which does not change from record to record, one can use a

frVariables global object, such as:

frVariables['Reporting Period'] := 'January';
frReport1.ShowReport;

• When one passes values which do change from record to record, one can use either a data

dictionary or a TfrReport.OnGetValue event handler, such as:

procedure TForm1.frReport1GetValue(const ParName: String; var ParValue: Variant);
begin
 if AnsiCompareText(ParName, 'Reported Period') = 0 then
 ParValue := Table1OtchPeriod.Value;
end;

• One can also fill the list of variables programmatically:

with rReport1.Dictionary do f
begin
 Variables['Number’] := 1;
 Variables['Sum'] := '0.2 * Table1."Summa"';
 Variables['Date'] := '''' + 'January' + '''';
end;

(An extra pare of quotes in this example is necessary for assigning string constants).

FastReport regards string values, assigned to variables from data dictionary, as expressions to be
computed. If a variable is not used in the data dictionary it works as usual.
 One must remember that if you use variables from frVariables list or if you use them through
OnGetValue event handler, they need not be put into the data dictionary.

- 123 -

Extending FastReport functionality
FastReport report generator is open, meaning its functionality can be extended by writing

your own function libraries, new visual components, export filters and wizards. This section contains
information on the ways to develop such extensions.

Making your own preview windows

Sometimes it is necessary to swap the standard preview window with your own. This may be
caused by the necessity to run additional functions before the output (for example inserting the
printing date value into the table) or the built-in preview window may not meet the needs of the
developer.

Either way, FastReport allows developers to build their own preview windows. TfrPreview

component on the FastReport component palette is exactly for that purpose. The primary
commands of this component are:
• First, Prev, Next, Last – for navigating to the first, the previous, the next and the last page of the

report respectively;
• SaveToFile – saves the prepared report in a file of any of the supported formats;
• LoadFromFile – loads a pre-prepared report from a file in *.FRP format;
• Print – prints the prepared report;
• OnePage – sets the scale of preview so that one whole page will be viewed;
• PageWidth – sets the scale for viewing a page by its width.

In addition to the commands outlined above, the TfrPreview component has a Zoom property
which sets the page preview scale. The preview scale can be increased or decreased as a percentage
from the original size. The TfrPreview component will also show scroll bars and a status bar with
information regarding the current page number and total pages in the document.

To replace the standard preview window to the FastReport report generator, the corresponding
TfrReport component’s preview property should be changed to this window. You can find an
example of a user preview window in the “Reports” subdirectory of FastReports “Examples”
directory.

- 124 -

Expanding the functions list
Earlier in this manual it was described how FastReport’s functionality can be extended. This

method is based on OnUserFunction event of TfrReport object. This method has one disadvantage:
Each TfrReport object which uses a user function, needs to have an OnUserFunction event handler
(i.e. user functions described this way are local to TfrReport object). Alternatively, you can organize
a whole number of functions as a separate class (functions library).

FastReport supports this alternative approach, where you can write a class which derives from
TfrFunctionLibrary. This class defines the basic set of properties and methods.

This is the way TfrFunctionLibrary base class is declared in FR_Class module:

TfrFunctionLibrary = class(TObject)
public
 List: TStringList;
 constructor Create; virtual;
 destructor Destroy; override;
 function OnFunction(const FName: String; p1, p2, p3: Variant;
 var : String): Boolea val n;
 procedure DoFunction(FNo: Integer; p1, p2, p3: Variant; var val: String);
 virtual; abstract;
 procedure AddFunctionDesc(FuncName, Category, Description: String);
end;

Following are the key methods:
• Create –the designer fills the List field with the list of functions desired, sorted alphabetically, in

upper case;
• DoFunction – when called, this method has to return (return what?) to the computed function

value in Val argument. Each function can have up to 3 arguments. These arguments’ values are
passed to DoFunction method as P1, P2 и P3 arguments;

• AddFunctionDesc – call this method to add the function description to the expression builder.

To add a list of additional functions to the “Insert Function” dialog box you will also have to
call AddFunctionDesc procedure with the following arguments:
• Function name;
• This function category name;
• Text description of the function syntax and purpose. Note: «/» symbol in the function description

is compulsory! It separates syntax description from the function itself.
Remember that each function has to be called separately by AddFunctionDesc.

Below is a simple example of a library with two functions:

type
 TMyFunctionLibrary = class(TfrFunctionLibrary)
 public
 constructor Create; override;
 procedure DoFunction(FNo: Integer; p1, p2, p3: Variant;
 var val: Variant); override;
 end;

constructor TMyFunctionLibrary.Create;
begin
 inherited Create;
 with List do
 begin
 Add('SPELLDATE');
 Add('SPELLSUM');

 AddFunctionDesc('SPELLSUM', 'My functions',
end;

 'SPELLSUM (<Number>)/Returns value spelled out.');

- 125 -
 AddFunctionDesc('SPELLDATE', 'My functions',

 'SPELLDATE(<Date>)/Returns value spelled out.');
end;

procedure TMyFunctionLibrary.DoFunction(FNo: Integer; p1, p2, p3: Variant;
 var val: Variant);
begin
 := 0;val
 case FNo of
 0: val := My_DateConvertion_Routine(frParser.Calc(p1));
 1: val := My_SumConvertion_Routine(frParser.Calc(p1));
 end;
end;

To enable a prepared function library in FastReport, you have to register it. This means
calling the frRegisterFunctionLibrary procedure and passing a reference to the class (not an instance
of the class) to it as an argument. For example:

frRegisterFunctionLibrary(TMyFunctionLibrary);

To unregister the function library, call

frUnRegisterFunctionLibrary(TMyFunctionLibrary);

- 126 -

Examples of reports

Examples of reports

- 127 -

Examples of reports
FastReport is delivered with a number of examples which demonstrate different sorts of

operation and different kinds of report composition. The example files are located in the DEMO
subdirectory of FastReport home directory.

There are 9 projects included in the standard delivery which demonstrate the following
possibilities:
• Insertion of graphs and diagrams in a report (CHART directory);
• Storing of a report template in Delphi form, instead of FRF file (DFMSTORE directory);
• Organizing the working environment for "end user" (USER directory);
• Usage of db-aware components (directory ENDUSER1);
• Controlling the logic of report composition using the OnManualBuild event (MANUAL

directory);
• Manual report composition at runtime using code (RUNTIME directory);
• Printing of column reports with variable or unknown number of columns (PRNTBL1directory);
• Printing of Column reports with variable width of the columns (PRNTBL2directory);
• Construction of different reports using standard Delphi designer and development environment

(REPORTS directory).

All the mentioned examples will be good manuals for those who would like to look at the

majority of possibilities of the new report generator in short time, without re-reading the
documentation.

Let's consider some of these examples in detail.

- 128 -

Insertion of graphs and diagrams in the report
This example is located in the CHART subdirectory of FastReport examples directory. This

project contains only one form which includes the following components:
1. A set of TTable/TDataSource components for extracting the report data from a database table

(this example uses the COUNTRY.DB as data source which comes with the standard Delphi
examples);

2. TfrDBDataSet components for binding the data source of a DB to the FastReport object;
3. TfrReport components – the report itself;
4. TfrChartObject components -"Graph" hook unit;
5. TfrDesigner components - run time report designer (end user report designer).

The form is represented in a figure.

The shown report consists of three pages with one graph on each page. The first one displays
the contents of the AREA field from the COUNTRY table in vertical columns. The second graph
represents similar data, but from POPULATION field. In order to let the two graphs show some data
it is important to associate the “Diagram” object, which is placed on the report form, with the data
that should be represented in it. This can be done with the editor of the “Diagram” component which
is activated by a double click on the object. On the “Data” bookmark of this editor the fields «For the
signature» and «For data» of the «Name of the object» group have to be filled in.

In this example these fields contain the values Memo2 and Memo6. Memo2 and Memo6 are
the Names of the “Text” objects which are linked to the COUNTRY AREA and POPULATION
Field of the table.

Thus, the data from the corresponding fields of all COUNTRY table records will be stored in
the "Diagram" objects.

The third graph demonstrates the possibility of a so-called "TopX-graphs" composition,
which only shows the X greatest values. The sum of the rest is represented in a separate column

- 129 -

named "Others". This can be done by setting a nonzero value to the «Show … values» field on the
"Data" bookmark of the component editor and setting the sum signature of the remaining values in
the "Signature" field. The component properties editor dialog box for Top5 report is shown in a
figure.

This report also shows that all pages of the report form are printed out closely to each other.

This allows to fill a paper-list of the report more efficient. This feature can be activated by setting an
appropriate flag in the page properties dialogue.

The preview window of the described report is represented below:

- 130 -

- 131 -

Controlling the logic of report composition using the OnManualBuild event
The source code for this example is placed in the MANUAL subdirectory.
This example contains just one simple form with a button that starts the report preview. The

form of the report in the FastReport designer looks like in the figure:

If you press the preview button in the designer now you will just see a “Hello!” line on a
green background. This happens because the two sections of «Master data» are not associated with
the data source and therefore they are not printed out.

However, if you execute this example, you will get the report with four pages on which the
two sections of «Master data» are printed out in addition to the mentioned text line. This is achieved
by the following OnManualBuild event handler of the FastReport object:

procedure TForm1.frReport1ManualBuild(Sender: TfrPage);
var
 i, j: Integer;
begin
 Sender.ShowBandByType(btReportTitle);
 for i := 0 to 3 do
 begin
 Sender.ShowBandByName('Band2');
 for j := 0 to 2 do
 Sender.ShowBandByName('Band3');
 if i <> 3 then
 Sender.NewPage;
 end;
end;

In this event handler the header section with all its fields is printed on the first page with

Sender.ShowBandByType(btReportTitle). Then the four pages are generated in a loop with the
Sender.NewPage method and the section with the «Cu-cu!» text is printed out three times on each
page.

This shows that with the OnManualBuild event handler the logic of the construction of the
report can be controlled. That gives a greater flexibility to reports.

- 132 -

Manual report composition at runtime using code
Sometimes the structure of a report is unknown at application designing stage or it can vary

during runtime. In this case it is necessary to create the report template dynamically.
In such cases the report is not fixed and therefore can not be defined by the programmer as a

separate file in contrast to a new form for a bookkeeping software when so called end-user reports
can be used.

With FastReport it is possible to create a report form dynamically using your own program
code just like the way it works, for example, with VCL objects.

This example is located in the RUNTIME subdirectory.
After pressing the button in this example a report that receives a list of companies from the

CUSTOMER.DB table is created. The source code for the OnClick event handle of this button is
shown below:

procedure TForm1.Button1Click(Sender: TObject);
var
 v: TfrView;
 b: TfrBandView;
 Page: TfrPage;
begin
 frReport1.Pages.Clear;
 frReport1.Pages.Add; // create page
 Page := frReport1.Pages[0];

 b := TfrBandView(frCreateObject(gtBand, '')); // create MasterData band
 b.SetBounds(0, 20, 0, 20);
 b.BandType := btMasterData;
 b.Dataset := 'frDBDataSet1';
 Page.Objects.Add(b);

 v := frCreateObject(gtMemo, ''); // create data field
 v.SetBounds(20, 20, 200, 16);
 v.Memo.Add('[Table1."Company"]');
 Page.Objects.Add(v);

 f
end;

rReport1.ShowReport;

First this code deletes all pages available in the report form and then creates an empty one:

frReport1.Pages.Clear;
frReport1.Pages.Add; // create page

Next a «Master data» section is created on this page and is associated with the data source:

Page := frReport1.Pages[0];

b := TfrBandView(frCreateObject(gtBand, '')); // create MasterData band
b.SetBounds(0, 20, 0, 20);
b.BandType := btMasterData;
b.Dataset := 'frDBDataSet1';
Page.Objects.Add(b);

The following step creates one “Text” object which is associated with the COMPANY field

of the CUSTOMER.DB table:

v := frCreateObject(gtMemo, ''); // create data field
v.SetBounds(20, 20, 200, 16);
v.Memo.Add('[Table1."Company"]');
Page.Objects.Add(v);

At last the mentioned event handler shows the prepared report in a preview.

- 133 -

Printing of column reports with variable or unknown number of columns
In practice it is frequently necessary to print out a column report with an unknown number of

columns or with a number of columns that can be changed during program execution. This is needed,
for example, at development of a database editor with the possibility of printing out the data of a
table. In this case the report could be created by using program code but FastReport gives an easier
solution for this problem.

So-called CrossTab-reports are used for that purpose. The distinctive feature of such a report
is printing out the data in columns. It’s not necessary to know the quantity of columns before.
Especially for this type of reports CrossXXX sections are placed vertically, not horizontally. On
these sections the “Text” objects are allocated on the intersections of the horizontal (for example
«Master data») and the vertical (for example «Cross data») sections. In this case the report is created
by the following principle: for all records in the data source of the horizontal section all appropriate
records in the data source of the vertical section are searched and assigned.

So, during printing the contents of the table the data source for «Master data» contains the
records for the table itself, and the list of fields of each single record is the data source for the «Cross
data» section.

The simplest example of a CrossTab report can be found in the PRNTBL1 directory. The
report form in this example looks like it is shown in the figure.

This figure shows that the “Text” objects are allocated on the intersections of the «Master
header» and «Cross data» sections, respectively of the «Master data» and «Cross data» sections. If
the report is constructed the records in the CUSTOMER.DB table are used as data source for the
«Master data» section. The number of columns in the report is determined by two TfrUserDataset
virtual sources which links the number of “records” with the number of fields of the
CUSTOMER.DB table. The values of the fields are set in the OnGetValue event of the TfrReport
object:

procedure TForm1.frReport1GetValue(const ParName: String; var ParValue: Variant);
begin

- 134 -

 if ParName = 'Cell' then
 ParValue := Table1.Fields[frUserDataset1.RecNo].Value;
 if ParName = 'Header' then
 ParValue := Table1.Fields[frUserDataset2.RecNo].FieldName;
end;

If this example is executed, all records of CUSTOMER.DB table can be previewed. The

following figure shows this preview:

- 135 -

Column reports with variable width of the columns
In the previous examples it is supposed that all columns of the report has the identical width.

However, in most cases it is necessary that the width of each column is determined by the data within
it. So if, for example, there are two columns, one contains a line counter and the other presents data
from a memo field, it is obvious that the first column should be much narrower than the one
containing the memo field text.

The enhanced source code is placed in the PRNTBL2 subdirectory. This example is
completely similar to the previous one except that the width of the columns in the report are set
depending on the data within. The two new event handlers for the TfrReport in this example make it
possible to change the width of the columns dynamically.

To define the width of a column based on its data the OnPrintColumn event handler of the
TfrReport object is used. In this example the width of a column with text boxes is determined as a
product of the size of the field and the width of the letter “W”; for “Date and time” fields the width of
the column is set to a width of 15 “W” letters; the width of all other columns are set to 64 pixels.

The complete source code of the OnPrintColumn event handler is shown below:

procedure TForm1.frReport1PrintColumn(ColNo: Integer; var Width: Integer);
var
 Field: TField;
begin
 Field := Table1.Fields[ColNo – 1];
 if Field is TStringField then
 Width := Field.Size * Canvas.TextWidth('W')
 else if Field is TDateTimeField then
 Width := 15 * Canvas.TextWidth('W')
 else
 Width := 64;
 F
end;

Width := Width;

The OnBeforePrint event handler sets the width of a column to a value which is defined in the
previous event handler:

procedure TForm1.frReport1EnterRect(Memo: TStringList; View: TfrView);
begin
 View.dx := FWidth;
end;

In this example a more effective filling of a page at report printing is achieved because every
column has a width which is sufficient for the output of the data within. TfrPrintTable and
TfrPrintGrid components which print TDBGrid table and component contents work just like this.

- 136 -

